234 PARTHENOGENETIC ACTIVATION OF DOMESTIC CAT OOCYTES USING STRONTIUM

2008 ◽  
Vol 20 (1) ◽  
pp. 196 ◽  
Author(s):  
C. Wang ◽  
K. Lee ◽  
S. Koh ◽  
Z. Machaty

Cloning domestic cats is useful in comparative medicine programs as it may provide insight into unique disease mechanisms and facilitate investigation of new therapeutic options. It is also believed to be beneficial for the conservation of precious animal models. However, as in many species, low birth rates after nuclear transfer remain a formidable challenge. One potential reason for the low efficiency is poor embryo development following activation of the reconstructed oocytes. The number of methods available to induce a transient increase in the oocytes' cytosolic free calcium level to stimulate development is rather limited. Although strontium has been reported to successfully activate the developmental program of mature mouse and rat oocytes, it was without effect in all other species studied. Here we investigated the effect of strontium on mature cat oocytes. Oocytes collected from the cat ovaries were matured in vitro in Feline Optimized Culture Medium (FOCM) supplemented with 0.6 mm cysteine, 0.1 mm cysteamine, 1 IU mL–1 eCG, 2 IU mL–1 hCG, 25 ng mL–1 epidermal growth factor (EGF) for 24 h. For intracellular calcium measurements, mature oocytes were incubated in the presence of 2 µ m fura-2Am, a calcium indicator dye, and 0.02% pluronic F-127 for 40 min. Individual oocytes were transferred into calcium-free HEPES, and SrCl2 was added to the medium at a final concentration of 20 mm. Changes in the intracellular free calcium levels were then monitored using an InCyt Im2™ fluorescence imaging system (Intracellular Imaging, Cincinnati, OH, USA). Preimplantation embryonic development was also evaluated by incubating the oocytes with 20 mm SrCl2 in calcium-free HEPES medium supplemented with 7.5 µg mL–1 cytochalasin B for 6 h. Control oocytes were activated by two 20-µs-long, 100 kV cm–1 direct current pulses and incubated in the presence of 7.5 µg mL–1 cytochalasin B for 6 h. After activation, the oocytes were cultured in FOCM for 6 days. At the end of the culture period, embryonic development was recorded; the nuclear number of the embryos was also determined after staining with Hoechst 33342. Data were subjected to one-way ANOVA, and differences between treatments were analyzed using the Tukey test. We found that strontium triggered a transient rise in the intracellular free calcium concentration in all oocytes tested (N = 20). Strontium treatment also induced cleavage in 49.7% (92/185) of the oocytes, while 4.9% (9/185) of the activated oocytes developed to the blastocyst stage. In the electroporated group, cleavage frequency was 57.1% (104/182) and blastocyst formation was 8.8% (16/182). Data analysis showed that there was no significant difference between the two groups in terms of cleavage frequency and blastocyst formation. This is the first study to demonstrate that strontium can induce cytoplasmic calcium increase in cat oocytes and trigger development up to the blastocyst stage. The results also indicate that SrCl2 may be useful for oocyte activation during cat nuclear transfer. Additional studies are needed to determine whether SrCl2 can trigger development more effectively than current activation techniques.

2015 ◽  
Vol 27 (1) ◽  
pp. 159
Author(s):  
S. H. Lee ◽  
E. J. Park ◽  
J. H. Moon ◽  
K. Y. Song ◽  
S. J. Kim ◽  
...  

Antioxidants are widely used for in vitro production of embryos due to their activity as reactive oxygen species scavengers. Among various antioxidants, resveratrol supplementation in in vitro-maturation (IVM) media and trolox supplementation in in vitro-culture (IVC) media improves oocyte maturation and embryonic development in other species, such as cattle and sheep. Limited information is available, however, on the effect of resveratrol and/or trolox on porcine embryos produced in vitro. In this study, we evaluated the effect of resveratrol supplemented to the media of IVM and trolox treatment during IVC on porcine parthenotes. We used TCM-199 as IVM media and porcine zygote medium (PZM)-5 as IVC media. For activation, matured oocytes after 44 h of IVM were electrically activated with 280 mM mannitol and cultured in IVC medium (PZM-5). Statistical analyses of all data were carried out using SPSS 17.0 (one-way ANOVA, followed by Duncan's multiple range test). In the experiment 1, a total of 618 oocytes were used in 4 independent replicates to evaluate the effect of 4 different concentrations (0, 1, 2, or 4 μM) of resveratrol during IVM on parthenotes. Oocytes treated with 2 μM resveratrol during IVM had significantly higher cleavage rates and blastocyst formation rates (73.0 and 34.4% v. 64.0 and 18.3%, respectively) than the control group. Experiment 2 involved supplementation with trolox (0 μM, 100 μM, 200 μM, 400 μM) to 957 parthenotes during IVC for 7 days (4 replicates). Cleavage rates significantly increased in the 100 μM group (75.6 v. 69.1%), and blastocyst formation rates in the 200 μM group were significantly higher compared to the control group (33.7 v. 23.8%). To determine the combined effects of resveratrol treatment during IVM and trolox treatment during IVC, in the experiment 3 we selected an optimized concentration (2 μM of resveratrol and 200 μM of trolox) from each experiment and evaluated the combined effects (3 times replicated). We designed 4 groups: (1) control, (2) resveratrol only (R), (3) trolox only (T), and (4) resveratrol-trolox (R-T). The R group and R-T group showed significantly higher cleavage rates than the control group (81.8 and 83.1% v. 72.3%). All treatment groups showed significantly increased blastocyst formation rates compared with the control group (39.2, 37.8, and 38.4% v. 23.7%). There is no significant difference in total cell numbers of blastocyst among the control, R, and T groups (47.8 v. 54.2 v. 54.7). However, the R-T group had significantly more cells than the control group (67.1 v. 47.8). Our results suggest that 2 μM resveratrol treatment during IVM, followed by 200 μM trolox treatment during IVC, improves developmental potential of the parthenotes. For a further study, we will apply this condition to somatic cell nuclear transfer, and we also will verify quantitative PCR analysis of apoptosis-related mRNA expression of PA and somatic cell nuclear transfer embryos. This study was supported by the MOTIE (#10033839), IPET (#311011-05-3-SB010), Research Institute for Veterinary Science, TS Corporation, and the BK21 plus program.


2004 ◽  
Vol 16 (2) ◽  
pp. 272 ◽  
Author(s):  
T. Shin ◽  
T. Otoi ◽  
D.C. Kraemer ◽  
M.E. Westhusin

In order to establish an activation protocol for somatic cloning in the domestic cat, we evaluated the developmental competence of cat embryos derived from in-vitro matured ova after parthenogenetic activation treatment. The quality of parthenogenetic embryos was assessed by D3 cleavage rates, D8 rates of blastocyst formation and total nucleus numbers in expanded/hatching blastocysts. Parthenogenetic activation treatments were as follows;; Treatment I: 3.0kVcm−1 (25μs, twice) in 0.3M mannitol containing 0.1mM CaCl2· 2H2O and 0.1mM MgSO4, administered to matured cat oocytes and followed by 10μgmL−1 cycloheximide +5μgmL−1 cytochalasin B in TCM 199-Earle’s salt supplemented with 0.3% BSA for 6–7h. Treatment II: The first electric stimulation was performed as described for treatment I except that the activation medium consisted of 0.3M mannitol containing Mg, but without Ca. Two hours later, pre-pulsed MII oocytes were electropulsed by applying 1.0kVcm−1 (50μs, twice, 5s apart) in 0.3M mannitol containing Ca and Mg for additional activation, followed by culture in 10μgmL−1 cycloheximide +5μgmL−1 cytochalasin B treatment in TCM 199-Earle’s salt supplemented with 0.3% BSA for 6–7h. Immature cat oocytes were obtained from ovaries by mincing/dissection and matured in vitro for 26–30h as previously described (Gomez et al., 2001, Therigenology, 55, 472). Only MII oocytes with a 1st polar body were utilized for the activation procedure after removal of cumulus cells with 0.1% hyaluronidase by gentle pipetting. A total of 1120 oocytes were collected and the overall maturation rate was 49.8% (551/1120). After parthenogenetic activation of the MII oocytes, the embryos were cultured in vitro as described previously (Pope et al., 2000, Theriogenology, 53, 163–174). The results are shown in Table 1. Treatment II resulted in significantly higher (P<0.01) D3 cleavage rates;; however, there were no significant differences in D8 blastocyst formation and total nucleus numbers. These data suggest that an additional electric activation (Treatment II) may increase the in vitro cleavage rates compared to using a fusion and electrical stimulation simultaneously (Treatment I). In addition, we demonstrated the developmental competence of domestic cat embryos derived from in vitro maturation, activation, and culture for development to the pre-implantation stage. By using these procedures for SCNT, several pregnancies were established and a healthy cloned kitten resulted in our laboratory (Shin et al., 2002, Nature, 415, 859). Therefore, this protocol can be useful, not only for prediction of the developmental competence of domestic cat oocytes matured in vitro, but also when used with SCNT to produce cloned cats. Comparison of cleavage rates and developmental competence to blastocyst stage following parthenogenetic activation treatments in domestic cat oocytes matured in vitro


2016 ◽  
Vol 28 (2) ◽  
pp. 131
Author(s):  
M. D. Snyder ◽  
J. H. Pryor ◽  
M. D. Peoples ◽  
G. L. Williamson ◽  
M. C. Golding ◽  
...  

Epigenetic patterns established during early bovine embryogenesis via DNA methylation and histone modification patterns are essential for proper gene expression and embryonic development. We have previously discovered that suppression of absent, small, or homeotic-like (ASH2L) with small interfering RNA (siRNA) had no significant effect during in vitro embryo development when compared with its respective control (31.3 ± 2.0% standard error of the mean, n = 466 v. 34.8 ± 1.9%, n = 418). Analysing DNA methylation and histone modifications via immunocytochemistry will further explain the role of ASH2L during embryonic development, specifically at the blastocyst stage. In this experiment, we obtained mature bovine oocytes from a commercial supplier (De Soto Biosciences, Seymour, TN) and preformed IVF following standard laboratory protocol. Eighteen hours after IVF, presumptive zygotes were divided into 3 treatments: noninjected controls, nontargeting siRNA injected controls (siNULL), and injection with siRNA targeting ASH2L (siASH2L). Each embryo was injected with ~100 pL of 20 nM siRNA previously verified to suppress expression of ASH2L by ~79%. Embryos were cultured in Bovine Evolve (Zenith Biotech, Guilford, CT) supplemented with 4 mg mL–1 of BSA (Probumin, Millipore) for 7 days. Blastocysts from each treatment (N = 601) were fixed and prepared for immunocytochemistry following standard laboratory protocol. The following primary antibodies were used to target specific DNA and histone methylation marks: 5mc mAb (Epigentek, Farmingdale, NY), 5hmc pAb, H3K4me3 pAb (Active Motif, Carlsbad, CA), H3K4me2 pAb, H3K9me2–3 mAb, and H3K27me3 mAb (Abcam, Cambridge, MA). Embryos were fluorescently labelled with the following secondary antibodies: Alexa Flour 488 Goat Anti-Rabbit, Alexa 488 Donkey Anti-Goat, and Alexa Flour 594 Goat Anti-Mouse (Invitrogen, Carlsbad, CA). The DNA was stained with Hoechst 33342 (Invitrogen). Fluorescent images were captured using the Zeiss Stallion digital imaging work station. Ratio averages (targeting mark/DNA) were calculated and statistical analysis performed using one-way ANOVA and Tukey’s honestly significant difference to assess treatment effects. The ratio of DNA methylation to total DNA increased in siASH2L as compared with control and siNULL embryos (0.35 ± 0.01, 0.26 ± 0.02, and 0.30 ± 0.01, respectively; P < 0.01). The 5hmC was inversely related to 5mC levels and decreased in siASH2L embryos (0.75 ± 0.01, 0.93 ± 0.02, 0.87 ± 0.02, respectively; P < 0.0001). The H3K4me3 and H3K27me3 are also inversely related with decreased H3K4me3 in siASH2L versus control and siNULL embryos (0.48 ± 0.02, 0.57 ± 0.02, 0.58 ± 0.02, respectively; P < 0.001) and increased H3K27me3 (0.62 ± 0.02, 0.053 ± 0.01, 0.54 ± 0.02, respectively; P < 0.001). No differences were observed in H3K9me2–3 or H3K4me2 labelling across treatments. These results indicate that ASH2L may play a role in DNA methylation by decreasing 5mc and 5hmc conversion, which is a key event during early embryonic development. Suppression of ASH2L also alters global levels of H3H4me3 and H3K27me3, which may lead to transcription aberrations. Further analysis of siASH2L embryos via RNA-seq will help define its role during early embryonic development.


Reproduction ◽  
2012 ◽  
Vol 143 (5) ◽  
pp. 625-636 ◽  
Author(s):  
Chang-Gi Hur ◽  
Eun-Jin Kim ◽  
Seong-Keun Cho ◽  
Young-Woo Cho ◽  
Sook-Young Yoon ◽  
...  

Numerous studies have suggested that K+ channels regulate a wide range of physiological processes in mammalian cells. However, little is known about the specific function of K+ channels in germ cells. In this study, mouse zygotes were cultured in a medium containing K+ channel blockers to identify the functional role of K+ channels in mouse embryonic development. Voltage-dependent K+ channel blockers, such as tetraethylammonium and BaCl2, had no effect on embryonic development to the blastocyst stage, whereas K2P channel blockers, such as quinine, selective serotonin reuptake inhibitors (fluoxetine, paroxetine, and citalopram), gadolinium trichloride, anandamide, ruthenium red, and zinc chloride, significantly decreased blastocyst formation (P<0.05). RT-PCR data showed that members of the K2P channel family, specifically KCNK2, KCNK10, KCNK4, KCNK3, and KCNK9, were expressed in mouse oocytes and embryos. In addition, their mRNA expression levels, except Kcnk3, were up-regulated by above ninefold in morula-stage embryos compared with 2-cell stage embryos (2-cells). Immunocytochemical data showed that KCNK2, KCNK10, KCNK4, KCNK3, and KCNK9 channel proteins were expressed in the membrane of oocytes, 2-cells, and blastocysts. Each siRNA injection targeted at Kcnk2, Kcnk10, Kcnk4, Kcnk3, and Kcnk9 significantly decreased blastocyst formation by ∼38% compared with scrambled siRNA injection (P<0.05). The blockade of K2P channels acidified the intracellular pH and depolarized the membrane potential. These results suggest that K2P channels could improve mouse embryonic development through the modulation of gating by activators.


2008 ◽  
Vol 20 (8) ◽  
pp. 875 ◽  
Author(s):  
Sylvia J. Bedford-Guaus ◽  
Sook-Young Yoon ◽  
Rafael A. Fissore ◽  
Young-Ho Choi ◽  
Katrin Hinrichs

Methods presently used to activate mare oocytes for assisted reproduction technologies provide low rates of advanced embryonic development. Because phospholipase Cζ (PLCζ) is the postulated sperm-borne factor responsible for oocyte activation at fertilisation, the aim of the present study was to investigate the pattern of [Ca2+]i oscillations and developmental rates achieved by microinjection of three concentrations of mouse PLCζ complementary (c) RNA (1, 0.5 or 0.25 μg μL–1) into mare oocytes. The frequency of [Ca2+]i oscillations was no different (P > 0.05) after injection of 1, 0.5 or 0.25 μg μL–1 PLCζ cRNA (41.1 ± 5.3, 47 ± 4.0 and 55.4 ± 9.0, respectively). However, [Ca2+]i oscillations persisted longest (P < 0.05) for oocytes injected with 0.5 μg μL–1 PLCζ cRNA (570.7 ± 64.2 min). There was no significant difference in cleavage rates after injection of the three concentrations of PLCζ (P > 0.05; range 97–100%), but the proportion of oocytes reaching advanced stages of embryonic development (>64 nuclei) was significantly lower for oocytes injected with 0.25 μg μL–1 PLCζ cRNA (3%) than for those injected with 1 μg μL–1 PLCζ cRNA (15%). Based on these results, microinjection of PLCζ may prove an effective and consistent method for the parthenogenetic activation of mare oocytes for nuclear transfer and provides a physiologically relevant tool with which to study fertilisation-dependent [Ca2+]i signalling in this species.


Zygote ◽  
2021 ◽  
pp. 1-8
Author(s):  
Yongjin Lee ◽  
Hanna Lee ◽  
Joohyeong Lee ◽  
Seung Tae Lee ◽  
Geun-Shik Lee ◽  
...  

Summary This study was conducted to examine whether glucose in maturation medium containing reduced NaCl could improve oocyte maturation and embryonic development in pigs. The base medium was bovine serum albumin-free porcine zygote medium (PZM)-3 containing 10% (v/v) pig follicular fluid (FPZM) or 0.1% (w/v) polyvinyl alcohol (PPZM). Using each medium, the effects of NaCl concentrations (108 and 61.6 mM) and 5.56 mM glucose supplementation (designated as PZM108N, PZM108G, PZM61N, and PZM61G, respectively) were examined using a 2 × 2 factorial arrangement. When oocytes were matured in FPZM, glucose supplementation improved nuclear maturation compared with no supplementation, regardless of the NaCl concentrations. FPZM61G showed a higher blastocyst formation compared with FPZM108N and FPZM108G after parthenogenesis (PA). Blastocyst formations of somatic cell nuclear transfer (SCNT) embryos derived from FPZM61N and FPZM61G were higher compared with those of oocytes from FPZM108N. When oocytes were matured in PPZM, glucose added to PPZM108 and PPZM61 increased nuclear maturation compared with no supplementation. However, glucose added to PPZM108 did not alter embryonic development after PA. Additionally, oocytes matured in PPZM61G showed a higher blastocyst formation compared with those from PPZM61N. In SCNT, blastocyst formation was not influenced by glucose supplementation of PPZM108, but was increased by maturation in glucose-supplemented PPZM61. In embryonic development of in vitro fertilization (IVF), oocytes matured in medium with reduced NaCl and glucose showed significantly higher blastocyst formation compared with those matured in PPZM108G. Our results demonstrated that glucose in maturation medium containing 61.6 mM NaCl increased oocyte maturation and embryonic development after PA, SCNT, and IVF.


1999 ◽  
Vol 11 (8) ◽  
pp. 457 ◽  
Author(s):  
Christopher G. Grupen ◽  
Paul J. Verma ◽  
Zhong Tao Du ◽  
Stephen M. McIlfatrick ◽  
Rodney J. Ashman ◽  
...  

The current protocols used to activate pig nuclear transfer embryos are less efficient than those used for other species. To address this problem, the effect of multiple sets of electrical pulses on the parthenogenetic development of in vivo- and in vitro-derived porcine oocytes was examined. Each set of pulses consisted of two 1.5 kV cm–1 DC pulses of 60 s duration each, administered 1 s apart. For in vivo-derived oocytes, application of a second set of pulses 30 min after the first set increased the proportion of oocytes that developed to the blastocyst stage compared with a single treatment (51 v. 34%). Application of a third set of pulses 30 min after the second set reduced the rate of blastocyst formation compared with two sets of pulses. In contrast, the rate of blastocyst formation was greater with one set of pulses compared with two sets for in vitro matured oocytes (31 v. 16%). Additional sets of electrical pulses did not affect the number of cells in blastocysts obtained from either group of oocytes compared with a single treatment. In summary, the study demonstrates that the application of a second set of activating pulses 30 min after the first set is beneficial to in vivo-derived oocytes, but detrimental to in vitro matured oocytes, in terms of their ability to develop parthenogenetically to the blastocyst stage.


2018 ◽  
Vol 30 (7) ◽  
pp. 1002 ◽  
Author(s):  
Qing Guo ◽  
Long Jin ◽  
Hai-Ying Zhu ◽  
Xiao-Xu Xing ◽  
Mei-Fu Xuan ◽  
...  

In this study we examined the effects of JNJ-7706621, a cyclin-dependent kinase inhibitor, on the in vitro growth of pig embryos that had been produced either by parthenogenetic activation (PA) or somatic cell nuclear transfer (SCNT). A significantly higher percentage of PA embryos reached the blastocyst stage by Day 7 after exposure to 10 µM JNJ-7706621 for 4 h compared with embryos exposed to 5 µg mL−1 cytochalasin B for 4 h (P < 0.05). Similarly, the rate of Tyr15 phosphorylation of the complex of cyclin and p34cdc2 (CDK1) was significantly elevated in the JNJ-7706621-treated embryos compared with embryos exposed to cytochalasin B or non-treated controls (P < 0.05). In contrast, Thr161 phosphorylation of CDK1 was significantly lower in the JNJ-7706621-treated group compared with the cytochalasin B-treated as well as the non-treated group (P < 0.05). Similarly, the level of M-phase-promoting factor (MPF) in embryos was significantly lower in the JNJ-7706621-treated group compared with the cytochalasin B-treated and non-treated groups (P < 0.05). In addition, more SCNT embryos reached the blastocyst stage after treatment with JNJ-7706621 than following exposure to cytochalasin B (P < 0.05). In conclusion, these results reveal that exposure to 10 µM JNJ-7706621 for 4 h improves early development of PA and SCNT porcine embryos by suppressing the activity of CDK1 and a concomitant reduction in the level of MPF.


2008 ◽  
Vol 20 (1) ◽  
pp. 102
Author(s):  
J. Liu ◽  
M. E. Westhusin ◽  
D. C. Kraemer

Somatic cells in semen could be a valuable source of nuclei for cloning animals by somatic cell nuclear transfer, especially when other ways of obtaining somatic cells are not available. The usefulness of the cells cultured from bovine semen for nuclear transfer was evaluated in the present study. Twelve ejaculates were collected from nine bulls representing three breeds: Charolais, Brahman, and a crossbreed rodeo bull. All of the samples were processed immediately, and somatic cells were isolated by centrifuging through 20%, 50%, and 90% percoll columns (Nel-Themaat et al. 2005 Reprod. Fertil. Dev. 17, 314–315). Somatic cell lines were obtained from 7 of the 12 ejaculates. These cell lines have classic epithelial morphology, express cytokeratin and vimentin, and proliferate well in the medium we previously designed for the epithelial cells in ovine semen (Jie Liu et al. 2007 Biol. Reprod. special issue, 177–178). Cell lines from three bulls that had been cultured in vitro for 1–2 months were used in the cloning experiments. Bovine ovaries were collected from a local slaughterhouse and transported to the laboratory in warm saline solution within 2–4 h. Compact cumulus–oocyte complexes with evenly distributed cytoplasm were selected and matured for 18 h at 38.5�C with 5% CO2 in humidified air. Cumulus cells were removed by pipetting in 0.3% hyaluronidase solution (Sigma Chemical Co., St. Louis, MO, USA) for 5 min. Oocytes were selected for the presence of a first polar body and stained in 5 µg mL–1 Hoechst 33342 (Sigma) and 5 µg mL–1 cytochalasin B (Sigma) for 10–15 min before enucleation. Successful enucleation was confirmed by brief exposure of the oocytes to ultraviolet light. Epithelial cell lines cultured to 90–100% confluence were trypsinized, and a single cell was inserted into the perivitelline space of an oocyte. Fusion was induced by applying two 1.8–1.9 kV cm–1, 20 µs direct-current pulses delivered by an Eppendorf Multiporator (Eppendorf, North America) in fusion medium comprising 0.28 m Mannitol (Sigma), 0.1 mm CaCl2 (Sigma), and 0.1 mm MgSO4 (Sigma). One and half to 2 h post fusion, activation was induced by applying two 0.3 kV cm–1, 55 µs direct-current pulses in the fusion medium, followed by incubation in 10 µg mL–1 cycloheximide (Sigma) and 5 µg mL–1 cytochalasin B for 5 h in a humidified 5% CO2, 5% O2, and 90% N2 gas mixture at 38.5�C. The embryos were washed three times and cultured in commercially available G1/G2 medium (Vitrolife, Inc., Englewood, CO, USA) for up to 10 days. Blastocyst development rates using somatic cells from three of the bulls, 1-year-old Charolais, 6-year-old Brahman, and 8-year-old Brahman, were 15.9% (18/113), 34.5% (29/84), and 14.4% (13/90) of the fused one-cell embryos, respectively. Of these blastocyst stage embryos, 38.9% (7/18), 72.4% (21/29), and 61.5% (8/13) hatched, respectively. The present study shows that epithelial cells cultured from bovine semen can be used to produce blastocyst-stage embryos by somatic cell nuclear transfer.


2008 ◽  
Vol 20 (1) ◽  
pp. 197
Author(s):  
J. Zhu ◽  
K. H. S. Campbell

The objective of the present experiments was to examine whether strontium could activate in vitro-matured ovine oocytes. Oocytes were collected and matured as previously described (Lee and Campbell 2006 Biol. Reprod. 74, 691–698). Briefly, selected cumulus–oocyte complexes were cultured in modified TCM-199 medium supplemented with 20% sheep serum and hormones for 22–23 h, at 39°C, 5% CO2 in air. Matured oocytes were randomly divided into four groups and treated as follows: (1) cultured in 10 mm strontium + 5 μg mL–1 cytochalasin B in Ca2+-free CZB medium for 4–5 h; (2) electrically activated in Ca2+-containing medium, then cultured in 10 mm strontium + 5 μg mL–1 cytochalasin B in Ca2+-free CZB medium for 4–5 h; (3) electrically activated in Ca2+-containing medium and then cultured in SOF medium containing 5 μg mL–1 cytochalasin B for 4–5 h; and (4) electrically activated in Ca2+-free medium and then transferred into SOF medium + 5 μg mL–1 cytochalasin B for 4–5 h. This experiment was repeated three times. Activation rates based on the number of pronuclear formations/the number of oocytes cultured were 96.7% (147/152), 95.9% (116/121), 75.9% (101/133), and 43.0% (56/107) in Groups 1–4, respectively. After 7 days of culture in SOF medium, 26.8%, 33.3%, 19.6%, and 0% of oocytes in Groups 1, 2, 3, and 4 developed to the blastocyst stage, respectively. Significant differences in blastocyst rate were observed across these groups except between groups 1 and 2 (P < 0.01). However, there were no significant differences in mean number of nuclei/blastocyst across Groups 1, 2, and 3 (P > 0.05). Our results demonstrated that in vitro-matured ovine oocytes can be effectively activated with strontium alone, resulting in an activation rate of 96.7% and a blastocyst rate of 26.8% (blastocysts/oocytes). Also, a combination of strontium and electrical pulses could benefit sheep oocyte activation and embryo development to the blastocyst stage (95.9% and 33.3%, respectively). We conclude that strontium is an effective activator for sheep oocyte activation and it could be used for sheep nuclear transfer. Table 1. Parthenogenetic development of oocytes activated by SrCl2+ and electrical pulses


Sign in / Sign up

Export Citation Format

Share Document