43 PRODUCTION OF CLONED BLASTOCYSTS USING EPITHELIAL CELLS CULTURED FROM BOVINE SEMEN

2008 ◽  
Vol 20 (1) ◽  
pp. 102
Author(s):  
J. Liu ◽  
M. E. Westhusin ◽  
D. C. Kraemer

Somatic cells in semen could be a valuable source of nuclei for cloning animals by somatic cell nuclear transfer, especially when other ways of obtaining somatic cells are not available. The usefulness of the cells cultured from bovine semen for nuclear transfer was evaluated in the present study. Twelve ejaculates were collected from nine bulls representing three breeds: Charolais, Brahman, and a crossbreed rodeo bull. All of the samples were processed immediately, and somatic cells were isolated by centrifuging through 20%, 50%, and 90% percoll columns (Nel-Themaat et al. 2005 Reprod. Fertil. Dev. 17, 314–315). Somatic cell lines were obtained from 7 of the 12 ejaculates. These cell lines have classic epithelial morphology, express cytokeratin and vimentin, and proliferate well in the medium we previously designed for the epithelial cells in ovine semen (Jie Liu et al. 2007 Biol. Reprod. special issue, 177–178). Cell lines from three bulls that had been cultured in vitro for 1–2 months were used in the cloning experiments. Bovine ovaries were collected from a local slaughterhouse and transported to the laboratory in warm saline solution within 2–4 h. Compact cumulus–oocyte complexes with evenly distributed cytoplasm were selected and matured for 18 h at 38.5�C with 5% CO2 in humidified air. Cumulus cells were removed by pipetting in 0.3% hyaluronidase solution (Sigma Chemical Co., St. Louis, MO, USA) for 5 min. Oocytes were selected for the presence of a first polar body and stained in 5 µg mL–1 Hoechst 33342 (Sigma) and 5 µg mL–1 cytochalasin B (Sigma) for 10–15 min before enucleation. Successful enucleation was confirmed by brief exposure of the oocytes to ultraviolet light. Epithelial cell lines cultured to 90–100% confluence were trypsinized, and a single cell was inserted into the perivitelline space of an oocyte. Fusion was induced by applying two 1.8–1.9 kV cm–1, 20 µs direct-current pulses delivered by an Eppendorf Multiporator (Eppendorf, North America) in fusion medium comprising 0.28 m Mannitol (Sigma), 0.1 mm CaCl2 (Sigma), and 0.1 mm MgSO4 (Sigma). One and half to 2 h post fusion, activation was induced by applying two 0.3 kV cm–1, 55 µs direct-current pulses in the fusion medium, followed by incubation in 10 µg mL–1 cycloheximide (Sigma) and 5 µg mL–1 cytochalasin B for 5 h in a humidified 5% CO2, 5% O2, and 90% N2 gas mixture at 38.5�C. The embryos were washed three times and cultured in commercially available G1/G2 medium (Vitrolife, Inc., Englewood, CO, USA) for up to 10 days. Blastocyst development rates using somatic cells from three of the bulls, 1-year-old Charolais, 6-year-old Brahman, and 8-year-old Brahman, were 15.9% (18/113), 34.5% (29/84), and 14.4% (13/90) of the fused one-cell embryos, respectively. Of these blastocyst stage embryos, 38.9% (7/18), 72.4% (21/29), and 61.5% (8/13) hatched, respectively. The present study shows that epithelial cells cultured from bovine semen can be used to produce blastocyst-stage embryos by somatic cell nuclear transfer.

2009 ◽  
Vol 21 (1) ◽  
pp. 198
Author(s):  
T. Xiang ◽  
S. Walker ◽  
K. Gregg ◽  
W. Zhou ◽  
V. Farrar ◽  
...  

Oct-4, a POU domain-containing transcription factor encoded by Pou5f1, is selectively expressed in pre-implantation embryos and pluripotent stem cells, but not in somatic cells. Because of such a unique expression feature, Oct-4 can serve as a useful reprogramming indicator in somatic cell nuclear transfer (SCNT). Compared with data of Oct-4 expression in mouse and bovine cloned embryos, little is known about this gene in equine nuclear transfer. In the present study, we investigated Oct-4 expression in donor cells, oocytes, and SCNT embryos to evaluate reprogramming of equine somatic cells following nuclear transfer. Horse ovaries were obtained from a local slaughterhouse and the oocytes collected from the ovaries were matured in vitro in an M199-based medium (Galli et al. 2003 Nature 424, 635) for 24 h. Donor cells were derived from biopsy tissue samples of adult horses and cultured for 1 to 5 passages. Standard nuclear transfer procedures (Zhou et al. 2008 Mol. Reprod. Dev. 75, 744–758) were performed to produce cloned embryos derived from equine adult somatic cells. Cloned blastocysts were obtained after 7 days of in vitro culture of reconstructed embryos. Total RNA were extracted using Absolutely RNA Miniprep/Nanoprep kits (Stratagen, La Jolla, CA) from oocytes (n = 200), donor cells, and embryos (n = 5). DNase I treatment was included in the procedure to prevent DNA contamination. Semiquantitative RT-PCR was performed with optimized cycling parameters to analyze Oct-4, GDF9, and β-actin in equine donor cells, oocytes, and cloned blastocysts. The RT-PCR products were sequenced to verify identity of the genes tested. The relative expression abundance was calculated by normalizing the band intensity of Oct-4 to that of β-actin in each analysis. No transcript of Oct-4 was detected in equine somatic cells used as donor nuclei, consistent with its expression patterns in other animal species, whereas Oct-4 was abundantly expressed in equine SCNT blastocysts derived from the same donor cell line. Oct-4 transcripts were also detected in equine oocytes and whether any maternally inherited Oct-4 mRNA persisted up to the blastocyst stage was unclear in this study. We selected GDF9 to address this question; GDF9 was abundantly detected in equine oocytes, consistent with its expression pattern in mouse and bovine, but not detected in donor cells and cloned blastocysts, suggesting that the GDF9 mRNA from the oocyte was degraded at least by the blastocyst stage. The results from this study imply occurrence of Oct-4 reprogramming in equine SCNT blastocysts, and future analysis for more developmentally important genes is needed to better understand reprogramming at molecular levels in this species.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1499
Author(s):  
Zhiguo Liu ◽  
Guangming Xiang ◽  
Kui Xu ◽  
Jingjing Che ◽  
Changjiang Xu ◽  
...  

Somatic cell nuclear transfer (SCNT) is not only a valuable tool for understanding nuclear reprogramming, but it also facilitates the generation of genetically modified animals. However, the development of SCNT embryos has remained an uncontrollable process. It was reported that the SCNT embryos that complete the first cell division sooner are more likely to develop to the blastocyst stage, suggesting their better developmental competence. Therefore, to better understand the underlying molecular mechanisms, RNA-seq of pig SCNT embryos that were early-dividing (24 h postactivation) and late-dividing (36 h postactivation) was performed. Our analysis revealed that early- and late-dividing embryos have distinct RNA profiles, and, in all, 3077 genes were differentially expressed. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that early-dividing embryos exhibited higher expression in genes that participated in the meiotic cell cycle, while enrichment of RNA processing- and translation-related genes was found in late-dividing embryos. There are also fewer somatic memory genes such as FLRT2, ADAMTS1, and FOXR1, which are abnormally activated or suppressed in early-dividing cloned embryos. These results show that early-dividing SCNT embryos have different transcriptional profiles than late-dividing embryos. Early division of SCNT embryos may be associated with their better reprogramming capacity, and somatic memory genes may act as a reprogramming barrier in pig SCNT reprogramming.


2005 ◽  
Vol 16 (8) ◽  
pp. 3887-3895 ◽  
Author(s):  
Matthias Becker ◽  
Antje Becker ◽  
Faiçal Miyara ◽  
Zhiming Han ◽  
Maki Kihara ◽  
...  

The embryonic genome is formed by fusion of a maternal and a paternal genome. To accommodate the resulting diploid genome in the fertilized oocyte dramatic global genome reorganizations must occur. The higher order structure of chromatin in vivo is critically dependent on architectural chromatin proteins, with the family of linker histone proteins among the most critical structural determinants. Although somatic cells contain numerous linker histone variants, only one, H1FOO, is present in mouse oocytes. Upon fertilization H1FOO rapidly populates the introduced paternal genome and replaces sperm-specific histone-like proteins. The same dynamic replacement occurs upon introduction of a nucleus during somatic cell nuclear transfer. To understand the molecular basis of this dynamic histone replacement process, we compared the localization and binding dynamics of somatic H1 and oocyte-specific H1FOO and identified the molecular determinants of binding to either oocyte or somatic chromatin in living cells. We find that although both histones associate readily with chromatin in nuclei of somatic cells, only H1FOO is capable of correct chromatin association in the germinal vesicle stage oocyte nuclei. This specificity is generated by the N-terminal and globular domains of H1FOO. Measurement of in vivo binding properties of the H1 variants suggest that H1FOO binds chromatin more tightly than somatic linker histones. We provide evidence that both the binding properties of linker histones as well as additional, active processes contribute to the replacement of somatic histones with H1FOO during nuclear transfer. These results provide the first mechanistic insights into the crucial step of linker histone replacement as it occurs during fertilization and somatic cell nuclear transfer.


2018 ◽  
Vol 24 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Shuang Liang ◽  
Zheng-Wen Nie ◽  
Jing Guo ◽  
Ying-Jie Niu ◽  
Kyung-Tae Shin ◽  
...  

AbstractMicroRNA (miR)-29b plays a crucial role during somatic cell reprogramming. The aim of the current study was to explore the effects of miR-29b on the developmental competence of bovine somatic cell nuclear transfer (SCNT) embryos, as well as the underlying mechanisms of action. The expression level of miR-29b was lower in bovine SCNT embryos at the pronuclear, 8-cell, and blastocyst stages compared within vitrofertilized embryos. In addition, miR-29b regulates the expression of DNA methyltransferases (Dnmt3a/3bandDnmt1) in bovine SCNT embryos. We further investigated SCNT embryo developmental competence and found that miR-29b overexpression during bovine SCNT embryonic development does not improve developmental potency and downregulation inhibits developmental potency. Nevertheless, the quality of bovine SCNT embryos at the blastocyst stage improved significantly. The expression of pluripotency factors and cellular proliferation were significantly higher in blastocysts from the miR-29b overexpression group than the control and downregulation groups. In addition, outgrowth potential in blastocysts after miR-29b overexpression was also significantly greater in the miR-29b overexpression group than in the control and downregulation groups. Taken together, these results demonstrated that miR-29b plays an important role in bovine SCNT embryo development.


2007 ◽  
Vol 19 (1) ◽  
pp. 142 ◽  
Author(s):  
D. Iwamoto ◽  
K. Saeki ◽  
S. Kishigami ◽  
A. Kasamatsu ◽  
A. Tatemizo ◽  
...  

Although cloning by somatic cell nuclear transfer (SCNT) has been achieved in various mammalian species, its efficiency has been very low (Han et al. 2003 Theriogenology 59, 33–44). Successful cloning requires conversion from differentiated donor nuclei to embryonic nuclei after transfer of the somatic nuclei into enucleated oocytes. Reprogramming of the transferred somatic nuclei must be completed by the time when normal activation of the embryonic genome occurs (Solter 2000 Nat. Rev. Genet. 1, 199–207). Recently, both full-term development and pre-implantation development of mouse SCNT embryos were significantly enhanced by treatment with trichostatin A (TSA), an inhibitor of histone deacetylase (Kishigami et al. 2006 Biochem. Biophys. Res. Commun. 340, 183–189; Rybouchkin et al. 2006 Biol. Reprod. 74, 1083–1089). The objective of this study was to investigate the effects of TSA on the development of bovine SCNT embryos. Bovine fibroblasts were cultured under serum starvation (0.4% FCS) for 7 days and then used as donor cells. The cells were electro-fused with bovine enucleated matured oocytes, and activated with a calcium ionophore and cycloheximide. They were subsequently cultured in mSOF medium until 168 h post-activation (hpa). The NT embryos were exposed to 0 (control), 5, 50, and 500 nM TSA from the start of activation to 48 hpa. Experiments were repeated 3 times, and the data were analyzed with Fisher's PLSD test following ANOVA. The cleavage rates were the same among the groups (60 to 80%; P >0.05). However, the blastocyst rate of NT embryos treated with 50 nM TSA was higher than that of control embryos (40% vs. 19%, respectively; P < 0.05). On the other hand, the blastocyst rate was lower with 500 nM TSA than with 5 or 50 nM TSA (7% vs. 33% or 40%; P < 0.05). These data suggest that proper TSA treatment after somatic cloning improves the rate of development of bovine cloned embryos to the blastocyst stage. Further research is needed to examine whether NT embryos derived from different cell lines or types have similar susceptibility to TSA.


2015 ◽  
Vol 27 (1) ◽  
pp. 104
Author(s):  
N. L. Selokar ◽  
M. Saini ◽  
H. Agrawal ◽  
P. Palta ◽  
M. S. Chauhan ◽  
...  

Cryopreservation of semen allows preservation of somatic cells, which can be used for the production of progeny through somatic cell nuclear transfer (SCNT). This approach could enable restoration of valuable high-genetic-merit progeny-tested bulls, which may be dead but the cryopreserved semen is available. We have successfully produced a live buffalo calf by SCNT using somatic cells isolated from >10 year old frozen semen (Selokar et al. 2014 PLoS One 9, e90755). However, the calf survived only for 12 h, which indicates faulty reprogramming of these cells. The present study was, therefore, carried out to study the effect of treatment with trichostatin A (TSA), an epigenetic modifier, on reprogramming of these cells. Production of cloned embryos and determination of quality and level of epigenetic markers in blastocysts were performed according to the methods described previously (Selokar et al. 2014 PLoS One 9, e90755). To examine the effects of TSA (0, 50, and 75 nM), 10 separate experiments were performed on 125, 175, and 207 reconstructed embryos, respectively. The percentage data were analysed using SYSTAT 12.0 (SPSS Inc., Chicago, IL, USA) after arcsine transformation. Differences between means were analysed by one-way ANOVA followed by Fisher's least significant difference test for significance at P < 0.05. When the reconstructed buffalo embryos produced by hand-made clones were treated with 0, 50, or 75 nM TSA post-electrofusion for 10 h, the cleavage percentage (100.0 ± 0, 94.5 ± 2.3, and 96.1 ± 1.2, respectively) and blastocyst percentage (50.6 ± 2.3, 48.4 ± 2.7, and 48.1 ± 2.6, respectively), total cell number (274.9 ± 17.4, 289.1 ± 30.1, and 317.0 ± 24.2, respectively), and apoptotic index (3.4 ± 0.9, 4.5 ± 1.4, and 5.6 ± 0.7, respectively) in Day 8 blastocysts were not significantly different among different groups. The TSA treatment increased (P < 0.05) the global level of H4K5ac but not that of H3K18a in embryos treated with 50 or 75 nM TSA compared with that in controls. In contrast, the level of H3K27me3 was significantly lower (P < 0.05) in cloned embryos treated with 75 nM TSA than in embryos treated with 50 nM TSA or controls. The ultimate test of the reprogramming potential of any donor cell type is its ability to produce live offspring. To examine the in vivo developmental potential of the 0, 50, or 75 nM TSA treated embryos, we transferred Day 8 blastocysts, 2 each to 5, 6, and 5 recipients, respectively, which resulted in 2 pregnancies from 75 nM TSA treated embryos. However, one pregnancy was aborted in the first trimester and the other in the third trimester. In conclusion, TSA treatment of reconstructed embryos produced from semen-derived somatic cells alters their epigenetic status but does not improve the live birth rate. We are currently optimizing an effective strategy to improve the cloning efficiency of semen-derived somatic cells.


2018 ◽  
Vol 30 (1) ◽  
pp. 155
Author(s):  
W.-J. Zhou ◽  
S. Liang ◽  
X.-S. Cui

MicroRNAs (miRNAs) are small non-coding RNAs with important roles in diverse cellular processes. miR-29b plays a crucial role during somatic cell reprogramming. However, studies of the function of miR-29b in embryogenesis are limited. The aim of the current study was to explore the effects of miR-29b on the developmental competence of bovine somatic cell nuclear transfer (SCNT) embryos as well as the underlying mechanisms of action. The expression level of miR-29b was lower in bovine SCNT embryos at the pronuclear, 8-cell, and blastocyst stages compared with IVF embryos (P < 0.05). To determine the function of miR-29b in the bovine SCNT embryo, we microinjected a miR-29b mimic and inhibitor into bovine SCNT zygotes. The results showed that miR-29b significantly decreased the expression of Dnmts (Dnmt3a/3b and Dnmt1) in bovine SCNT embryos (P < 0.05). We further investigated SCNT embryo developmental competence and found that miR-29b overexpression during bovine SCNT embryonic development does not improve developmental potency (P > 0.05) but down-regulation inhibits developmental potency (P < 0.05). Although miR-29b overexpression does not improve the developmental potency of bovine SCNT embryos, the quality of bovine SCNT embryos at the blastocyst stage improved significantly (P < 0.05). The expression of pluripotency factors (OCT4 and SOX2) and cellular proliferation rate were significantly higher in blastocysts from the miR-29b overexpression group than the control and down-regulation groups (P < 0.05). In addition, outgrowth potential in blastocysts after miR-29b overexpression was also significantly greater in the miR-29b overexpression group than in the control and down-regulation groups (P < 0.05). Taken together, these results demonstrated that miR-29b plays an important role in bovine SCNT embryo development.


2018 ◽  
Vol 30 (7) ◽  
pp. 1002 ◽  
Author(s):  
Qing Guo ◽  
Long Jin ◽  
Hai-Ying Zhu ◽  
Xiao-Xu Xing ◽  
Mei-Fu Xuan ◽  
...  

In this study we examined the effects of JNJ-7706621, a cyclin-dependent kinase inhibitor, on the in vitro growth of pig embryos that had been produced either by parthenogenetic activation (PA) or somatic cell nuclear transfer (SCNT). A significantly higher percentage of PA embryos reached the blastocyst stage by Day 7 after exposure to 10 µM JNJ-7706621 for 4 h compared with embryos exposed to 5 µg mL−1 cytochalasin B for 4 h (P < 0.05). Similarly, the rate of Tyr15 phosphorylation of the complex of cyclin and p34cdc2 (CDK1) was significantly elevated in the JNJ-7706621-treated embryos compared with embryos exposed to cytochalasin B or non-treated controls (P < 0.05). In contrast, Thr161 phosphorylation of CDK1 was significantly lower in the JNJ-7706621-treated group compared with the cytochalasin B-treated as well as the non-treated group (P < 0.05). Similarly, the level of M-phase-promoting factor (MPF) in embryos was significantly lower in the JNJ-7706621-treated group compared with the cytochalasin B-treated and non-treated groups (P < 0.05). In addition, more SCNT embryos reached the blastocyst stage after treatment with JNJ-7706621 than following exposure to cytochalasin B (P < 0.05). In conclusion, these results reveal that exposure to 10 µM JNJ-7706621 for 4 h improves early development of PA and SCNT porcine embryos by suppressing the activity of CDK1 and a concomitant reduction in the level of MPF.


2009 ◽  
Vol 21 (1) ◽  
pp. 144 ◽  
Author(s):  
M. P. Green ◽  
C. Couldrey ◽  
M. C. Berg ◽  
D. N. Wells ◽  
R. S. F. Lee

The hematological characterization of clones derived by somatic cell nuclear transfer (SCNT) has not been extensively reported. Studies show that, generally, hematological parameters are within normal ranges, although distinct divergence between specific cohorts of clones and contemporaries exist. The aim of this study was to identify similarities and differences between cohorts of bovine clones and control animals and analyze the variations over time as the collective cohorts mature. Hematological profiles of 47 clones derived from 4 cell lines and 23 of their age- and sex-matched contemporary controls were compared. These donor cell lines were from 2 beef (male, n = 30) and 2 dairy (1 male, n = 9 and 1 female, n = 8) breeds and derived from myogenic cells, skin fibroblasts, and granulosa cells. Matched contemporaries, analyzed as one group, were produced via natural mating (n = 5) and AI (n = 14), with an additional in vitro-produced (IVP) group (n = 4) in the female cohort. All animals were subjected to similar management, nutrition, and environmental conditions. Serial samples were collected from birth until 15 months. Samples were assessed for the standard hematological parameters and cell morphology by a commercial clinical lab. Parameters were analyzed by one-way or as repeated measures ANOVA. The mean values for erythroid, myeloid, and lymphoid parameters were within normal ranges for both SCNT and controls, indicative of normal physiology. Red blood cells (RBC) from SCNT and control calves showed anisocytosis, poikilocytosis, cell fragmentation, and stippling, with a greater prevalence found in SCNT than in the controls. These abnormal morphologies were still evident in SCNT animals at 15 months of age, suggestive of delayed or incomplete erythroid maturation. Numbers of RBC, mean corpuscular volume (MCV), and hemoglobin (MCH) were different (P < 0.0001) between the collective SCNT cohorts and control animals over time, irrespective of genetics, sex, or breed. Taken together, these data suggest that erythropoiesis is generally perturbed in SCNT animals. In beef SCNT lines, platelet numbers were consistently different (P < 0.0001) from controls. White blood cell counts (WBC) were greater (P < 0.05) collectively in SCNT, although within the normal range, and the differential WBC changed with age (P < 0.05). Lymphocyte counts were greater (P < 0.05) in the collective SCNT cohorts. Further differences were seen in myeloid counts between specific SCNT and control cohorts. The greater variance evident in the myeloid parameters of SCNT animals was presumably because of an increased incidence of transient infections or inflammation in these animals. In summary, although most parameters were within the normal ranges over time, SCNT animals commonly display altered RBC, MCV, MCH, WBC, and lymphocyte parameters, which may be linked to cloning per se. This could partially explain the greater susceptibility of SCNT animals to external stressors. Supported by FRST contract C10X0311 and NRCGD.


Sign in / Sign up

Export Citation Format

Share Document