glucose supplementation
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 21)

H-INDEX

20
(FIVE YEARS 1)

2022 ◽  
Vol 12 ◽  
Author(s):  
Qingling Zhu ◽  
Mengmeng Zhang ◽  
Bingying Liu ◽  
Fang Wen ◽  
Zhili Yang ◽  
...  

Chlorella sorokiniana is one of the most productive microalgal species with a high potential for the production of biofuels and other high value-added molecules. Many studies have focused on its capability of mixotrophic growth using reduced organic carbon and growth pattern shift between autotrophic and mixotrophic conditions. In this study, we investigated growth patterns of a novel isolate, C. sorokiniana G32, under mixotrophic growth conditions supplemented with a low level (1.25 g L–1) and a high level (5 g L–1) of glucose. Physiological, transcriptomic (i.e., RNA-seq), and metabolomic (i.e., LC-MS/MS) methods were used. We showed that peak growth based on OD680nm absorbance is ∼4-fold higher with high glucose vs. low glucose supplementation. Photosynthetic efficiency (Fv/Fm) in G32 mixotrophic cultures with high or low glucose supplementation remains identical to that of G32 phototrophic growth. We also found that the conversion rate between absorbance-based cell density and cell dry weight with high glucose supplementation was lower than with low glucose. This suggests that more cell biomass is produced under high glucose treatment than with low glucose. The result was confirmed via sucrose density gradient centrifugation. It is likely that accumulation of high concentration of starch may account for this effect. Transcriptomic analysis of G32 cultures (i.e., via RNA-seq) in response to reciprocal change of glucose levels reveals that expression of a subset of differentially expressed genes (DEGs) is correlated with the amount of glucose supplementation. These DEGs are designated as glucose-specific responsive (GSR) genes. GSR genes are enriched for a number of energy metabolic pathways. Together with metabolomics data (i.e., LC-MS/MS), we show that under high-level supplementation, glucose is preferentially oxidized through an oxidative pentose phosphate pathway. Collectively, our results indicate the mechanism of regulation of glucose assimilation and energy metabolism in G32 under mixotrophic conditions with different levels of glucose supplementation revealed by transcriptomic and metabolomic analyses. We propose that C. sorokiniana G32 has the potential for the production of high value-added molecules.


2021 ◽  
pp. 105339
Author(s):  
Pedro C.A. Domingues ◽  
Viviane C. Oliveira ◽  
Felipe L. Bim ◽  
Carolina P. Aires ◽  
André P. Santos ◽  
...  

Author(s):  
Lingyan Li ◽  
Xianchao Guan ◽  
Hongliang Wang ◽  
Fuzhong Zhao ◽  
Yongli Qu

Background: The objective of the study was to investigate the effects of rumen-protected glucose (RPG) supplementation on growth performance, body measurements and plasma biochemical indices of Simmental bulls in Northeast China during the fattening period. Methods: A 90 d feedlot study was conducted using thirty Simmental bulls (body weight = 444.3±26.9 kg). Bulls were randomly allocated into three groups to receive a basal total mixed ration (TMR) supplemented daily with 0 g RPG (control, Con), 100 g RPG (RPG100) or 300 g RPG (RPG300) per bull. Growth performance, body measurements and plasma biochemical indices were evaluated. Result: The greater ADG (P less than 0.05) and lower feed efficiency value (P less than 0.01) were found for bulls fed RPG compared to CON diet. Bulls fed RPG had increased body height and chest girth growth compared with CON diet (P less than 0.05). The plasma glucose (GLC) concentration was higher for bulls fed RPG300 diet than CON and RPG100 diets (P less than 0.01). Nonestesterified fatty acid (NEFA) concentration was lower for RPG compared with CON treatment (P less than 0.05). Our analysis suggests that a daily supplement of 300 g RPG is an effective way to increase the body’s total GLC provision and thus improve the growth performance of Simmental bulls during the fattening period.


Author(s):  
Rui Tang ◽  
Xiaoxian Ren ◽  
Menglei Xia ◽  
Yanbing Shen ◽  
Linna Tu ◽  
...  

Steroidal 17-carbonyl reduction is crucial to the production of natural bioactive steroid medicines, boldenone (BD) is one of the important C17-hydroxylated steroids. Although efforts have been made to produce BD through biotransformation, the challenge of complex transformation process, high substrates cost, and low catalytic efficiencies have yet to be mastered. Phytosterol (PS) is the most widely accepted substrate for the production of steroid medicines due to its similar foundational structure and ubiquitous sources. 17β-Hydroxysteroid dehydrogenase (17βHSD) and its native electron donor play significant roles in the 17β-carbonyl reduction reaction of steroids. In this study, we bridged 17βHSD with a cofactor regeneration strategy in Mycobacterium neoaurum to establish a one-step biocatalytic carbonyl reduction strategy for efficient biosynthesis of BD from PS for the first time. After investigating different intracellular electron transfer strategies, we rationally designed the engineered strain with co-expression of 17βhsd and glucose-6-phosphate dehydrogenase (G6PDH) gene in M. neoaurum . With establishment of an intracellular cofactor regeneration strategy, the ratio of [NADPH]/[NADP + ] was maintained at a relatively high level, the yield of BD increased from 17% (in MNR M3M- ayr1 S.c ) to 78% (in MNR M3M- ayr1 & g6p with glucose supplementation), and the productivity was increased by 6.5 times. Furthermore, under the optimal glucose supplementation condition, the yield of BD reached 82%, which is the highest yield reported by transformation from PS with one-step. This study demonstrated an excellent strategy for production of many other valuable carbonyl reduction steroidal products from natural cheap raw materials. Importance Steroid C17-carbonyl reduction is one of the important transformations for the production of valuable steroidal medicines or intermediates for further synthesis of steroidal medicines, but it remains a challenge through either chemical or biological synthesis. Phytosterol can be obtained from low-cost residue of waste natural materials, and it is preferred as the economical and applicable substrate for steroid medicines production by Mycobacterium . This study explored a green and efficient one-step biocatalytic carbonyl reduction strategy for direct conversion of phytosterol to C17-hydroxylated steroids by bridging 17β-Hydroxysteroid dehydrogenase with a cofactor regeneration strategy in Mycobacterium neoaurum . This work has practical value for the production of many valuable hydroxylated steroids from natural cheap raw materials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Simone Morris ◽  
Pradeep Manuneedhi Cholan ◽  
Warwick J. Britton ◽  
Stefan H. Oehlers

AbstractHyperglycaemia damages the microvasculature in part through the reduced recruitment of immune cells and interference with platelet signalling, leading to poor wound healing and accelerated lipid deposition in mammals. We investigated the utility of zebrafish larvae to model the effect of exogenous glucose on neutrophil and macrophage recruitment to a tail wound, wound-induced haemostasis, and chicken egg yolk feed challenge-induced hyperlipidaemia by supplementing larvae with exogenous glucose by immersion or injection. Neither method of glucose supplementation affected the recruitment of neutrophils and macrophages following tail transection. Glucose injection reduced thrombocyte retention and fibrin plug formation while only thrombocyte retention was reduced by glucose immersion following tail transection. We observed accelerated lipid accumulation in glucose-injected larvae challenged with high fat chicken egg yolk feeding. Our study identifies conserved and divergent effects of high glucose on inflammation, haemostasis, and hyperlipidaemia in zebrafish larvae compared to mammals.


2021 ◽  
Vol 218 (10) ◽  
Author(s):  
Sarah C. Huen ◽  
Andrew Wang ◽  
Kyle Feola ◽  
Reina Desrouleaux ◽  
Harding H. Luan ◽  
...  

Sickness behaviors, including anorexia, are evolutionarily conserved responses to acute infections. Inflammation-induced anorexia causes dramatic metabolic changes, of which components critical to survival are unique depending on the type of inflammation. Glucose supplementation during the anorectic period induced by bacterial inflammation suppresses adaptive fasting metabolic pathways, including fibroblast growth factor 21 (FGF21), and decreases survival. Consistent with this observation, FGF21-deficient mice are more susceptible to mortality from endotoxemia and polybacterial peritonitis. Here, we report that increased circulating FGF21 during bacterial inflammation is hepatic derived and required for survival through the maintenance of thermogenesis, energy expenditure, and cardiac function. FGF21 signaling downstream of its obligate coreceptor, β-Klotho (KLB), is required in bacterial sepsis. However, FGF21 modulates thermogenesis and chronotropy independent of the adipose, forebrain, and hypothalamus, which are operative in cold adaptation, suggesting that in bacterial inflammation, either FGF21 signals through a novel, undescribed target tissue or concurrent signaling of multiple KLB-expressing tissues is required.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 426
Author(s):  
Xuemei Mao ◽  
Mengdie Ge ◽  
Xia Wang ◽  
Jianfeng Yu ◽  
Xiaojie Li ◽  
...  

Diatoms have important ecological roles and are natural sources of bioactive compounds. Nitzschia laevis is a member of marine diatoms that accumulates high-value products including fucoxanthin and eicosapentaenoic acid (EPA). In this study, physiological data showed that comparing to autotrophic growth, mixotrophic cultivation with glucose supplementation led to a decrease of chlorophyll and fucoxanthin content in N. laevis, and an increase of biomass density and EPA yield. To further examine the metabolic barriers for fucoxanthin and EPA biosynthesis, comparative transcriptomic and metabolome analyses were conducted, with a focus on the genes related to carotenoids biosynthesis and fatty acid metabolism. The results indicated that phytoene desaturase (PDS) and zeta-carotene isomerase (ZISO) could be the rate-limiting enzymes in carotenoid biosynthesis. The transcription regulation of 3-ketoacyl-CoA synthase (KCS) and elongation of very long chain fatty acids protein (EVOVL) are important contributors associated with polyunsaturated fatty acids (PUFAs) accumulation. Furthermore, we also investigated the glucose-associated regulatory genes using weighted gene co-expression network analysis, and identified potential hub genes linked with cell cycle, carbohydrate metabolism, purine biosynthesis, and lipid metabolism. This study offers a high-quality transcriptome resource for N. laevis and provides a molecular framework for further metabolic engineering studies on fucoxanthin and EPA production.


Zygote ◽  
2021 ◽  
pp. 1-8
Author(s):  
Yongjin Lee ◽  
Hanna Lee ◽  
Joohyeong Lee ◽  
Seung Tae Lee ◽  
Geun-Shik Lee ◽  
...  

Summary This study was conducted to examine whether glucose in maturation medium containing reduced NaCl could improve oocyte maturation and embryonic development in pigs. The base medium was bovine serum albumin-free porcine zygote medium (PZM)-3 containing 10% (v/v) pig follicular fluid (FPZM) or 0.1% (w/v) polyvinyl alcohol (PPZM). Using each medium, the effects of NaCl concentrations (108 and 61.6 mM) and 5.56 mM glucose supplementation (designated as PZM108N, PZM108G, PZM61N, and PZM61G, respectively) were examined using a 2 × 2 factorial arrangement. When oocytes were matured in FPZM, glucose supplementation improved nuclear maturation compared with no supplementation, regardless of the NaCl concentrations. FPZM61G showed a higher blastocyst formation compared with FPZM108N and FPZM108G after parthenogenesis (PA). Blastocyst formations of somatic cell nuclear transfer (SCNT) embryos derived from FPZM61N and FPZM61G were higher compared with those of oocytes from FPZM108N. When oocytes were matured in PPZM, glucose added to PPZM108 and PPZM61 increased nuclear maturation compared with no supplementation. However, glucose added to PPZM108 did not alter embryonic development after PA. Additionally, oocytes matured in PPZM61G showed a higher blastocyst formation compared with those from PPZM61N. In SCNT, blastocyst formation was not influenced by glucose supplementation of PPZM108, but was increased by maturation in glucose-supplemented PPZM61. In embryonic development of in vitro fertilization (IVF), oocytes matured in medium with reduced NaCl and glucose showed significantly higher blastocyst formation compared with those matured in PPZM108G. Our results demonstrated that glucose in maturation medium containing 61.6 mM NaCl increased oocyte maturation and embryonic development after PA, SCNT, and IVF.


Sign in / Sign up

Export Citation Format

Share Document