56 DEVELOPMENT OF INTERSPECIES CLONED EMBRYOS USING SOMATIC CELLS FROM VARIOUS SPECIES AND BOVINE CYTOPLASTS

2008 ◽  
Vol 20 (1) ◽  
pp. 109 ◽  
Author(s):  
B. S. Song ◽  
J. S. Kim ◽  
X. L. Jin ◽  
Y. Y. Lee ◽  
Y. J. Cho ◽  
...  

Interspecies somatic cell nuclear transfer (iSCNT) is an invaluable tool for studying nucleus–cytoplasm interaction and it provides a possible alternative to cloning animals whose oocytes are limited. In Experiment 1 of the present study, we investigated the developmental potential of iSCNT embryos created from monkey, pig, and goat donor cells and bovine cytoplasts. Bovine ovaries were obtained at a local slaughterhouse and the cumulus-oocyte complexes (COCs) aspirated. COCs were matured in vitro in TCM-199 supplemented with 10 IU mL–1 pregnant mare serum gonadotropin (PMSG), 10 IU mL–1 hCG, and 10 ng mL–1 epidermal growth factor (EGF) at 38.5�C and 5% CO2 in air for 20–22 h. At the end of IVM, half of the COCs were inseminated using frozen semen (1 � 106 sperm mL–1) and the remainder were used for iSCNT after the cumulus cells were removed with 0.1% hyaluronidase in TCM-199. The procedure of iSCNT and establishment of donor cells were according to Koo et al. (2002 Biol. Reprod. 67, 487–492). After IVF and iSCNT, presumptive zygotes were cultured in CR1-aa medium supplement with 0.3% BSA. After 3 days, cleaved embryos were transferred to CR1-aa medium supplemented with 10% FBS and cultured for an additional 4 days. In Experiment 2, we investigated the developmental ability of reconstructed embryos produced from monkey cells and bovine cytoplasts using various IVC media, such as IVC-1/2 (InVitroCare, Frederick, MD, USA), G-1/2 (Vitrolife, Inc., Englewood, CO, USA) and complete medium (CM; Irvine Scientific, Santa Clara, CA, USA). All experiments were repeated more than three times and data were analyzed with t-test of one-way ANOVA using the SAS 8.01 program (SAS Institute, Inc., Cary, NC, USA). Cleavage and developmental rate of blastocysts were expressed as mean � SEM. In Experiment 1, we investigated the development ability among IVF, SCNT (bovine-bovine), and iSCNT (monkey-bovine, pig-bovine, and goatbovine) embryos cultured in CR1-aa medium. Our results showed that the cleavage rate of IVF (73.6 � 1.8%, 86/117) embryos was not significantly different compared to SCNT (84.6 � 2.7%, 38/45), and iSCNT (89.3 � 2.7%, 100/110, monkey; 89.3 � 3.3%, 45/49, pig; and 86.0 � 2.3%, 87/95, goat). Although cloned embryos reconstructed with monkey cells did not develop to the blastocyst stage, iSCNT embryos derived from pig and goat cells did (3.3 � 3.0%, 2/49, and 7.9 � 1.7%, 7/95, respectively). However, these blastocyst formation rates were significantly lower compared to those of IVF and SCNT bovine embryos (32.5 � 2.9%, 38/117, and 26.7 � 2.8%, 12/88, respectively; P < 0.05). The success of iSCNT was confirmed by PCR of mitochondrial DNA, porcine PKA region, and SRY region. In Experiment 2, we investigated the developmental potential of cloned embryos produced by monkey cells using various IVC media (IVC-1/2, G-1/2, and CM). The cleavage rate of iSCNT embryos was not significantly different among these media (86.9 � 2.7%, 78.1 � 2.1%, and 82.3 � 1.8%, respectively). However, we did not observe blastocyst formation using these media. Therefore, we suggest that the cytoplasts of bovine oocytes can support blastocyst development of cloned embryos with pig and goat cells, but they were not suitable for monkey cells. In conclusion, our results suggest that species-specific differences are apparent in the production of iSCNT embryos.

Zygote ◽  
2001 ◽  
Vol 9 (3) ◽  
pp. 211-218 ◽  
Author(s):  
Jeong Tae Do ◽  
Kwon Ho Hong ◽  
Bo Yon Lee ◽  
Seung Bo Kim ◽  
Nam-Hyung Kim ◽  
...  

In this study we examined the developmental potential of reconstructed embryos and the fate of donor mitochondria during preimplantation development after nuclear transfer in cattle. Isolated cumulus cells were used as donor cells in nuclear transfer. Cumulus cells labelled with MitoTracker Green FM fluorochrome were injected into enucleated bovine MII oocytes and cultured in vitro. MitoTracker labelling on donor cells did not have a detrimental effect on blastocyst formation following nuclear transfer. Cleavage rate was about 69% (56/81) and blastocyst formation rate was 6.2% (5/81) at 7 days after nuclear transfer. The labelled mitochondria dispersed to the cytoplasm and became distributed between blastomeres and could be identified up to the 8- to 15-cell stage. Small patches of mitochondria were detected in some 8- to 15-cell stage embryos (5/20). However, donor mitochondria were not detected in embryos at the 16-cell stage and subsequent developmental stages. In the control group, mitochondria could be identified in arrested 1-cell embryos up to 7 days after nuclear transfer. These results suggest that disappearance of the labelled donor mitochondria in nuclear transfer bovine embryos is not due to fading of the fluorochrome marker, but is rather an as yet undefined cytoplasmic event.


2004 ◽  
Vol 16 (2) ◽  
pp. 282 ◽  
Author(s):  
Z. Roth ◽  
P.J. Hansen

Sphingosine-1-phosphate (S1P) is a sphingolipid metabolite that can block the sphingomyelin cell-death pathway by suppressing ceramide-induced apoptosis. The present study was performed to test whether S1P protects oocytes from heat shock during in vitro maturation. Cumulus-oocyte complexes obtained by slicing follicles were placed in maturation medium with or without 50nM S1P and cultured at 38.5°C (CON) or 41°C (41C) for the first 12h of maturation. Incubation during the last 10h of maturation (22-h total maturation time), fertilization, and embryonic development were performed at 38.5°C and 5% (v/v) CO2. Blastocyst development was recorded at 8 days post-insemination (dpi) and activity of group II caspases in 8-day blastocysts was determined using a fluoroprobe, PhiPhiLux-G1D2 (OncoImmunin, Gaithersburg, MD, USA). Data were analysed by least-squares ANOVA with the GLM procedure of SAS. Percentage data were subjected to arcsin transformation before analysis. Exposure of oocytes to thermal stress during the first 12h of maturation reduced cleavage rate (P&lt;0.01) and the number of oocytes developing to the blastocyst stage (P&lt;0.04). There was a temperature x S1P interaction for cleavage rate (P&lt;0.03) because S1P blocked effects of thermal stress on cleavage rate. Without S1P, the percentage of oocytes that cleaved by 3 dpi were 83.6±2.7% and 65.8±2.7% for CON and 41C, respectively. In the presence of S1P, percent cleavage was 86.7±2.7% and 83.9±2.7% for CON and 41C, respectively. There was a trend (P=0.06) for a temperature x S1P interaction for percent oocytes developing to blastocyst stage because S1P blocked effects of heat shock on development. Without S1P, the percentages of oocytes that developed to the blastocyst stage were 28.7±3.0% and 15.2±3.0% for CON and 41C, respectively. In the presence of S1P, percent blastocysts were 24.3±3.4% and 23.9±3.0% for CON and 41C, respectively. When development was expressed as percentage of cleaved embryos, however, there were no effects of temperature, S1P, or temperature x S1P on percent development to the blastocyst stage. Blastocyst caspase activity was not affected by temperature or S1P. In summary, exposure to physiologically relevant thermal stress during the first 12h of maturation has a deleterious effect on oocyte competence and this effect can be reduced by S1P. The fact that heat shock reduced the percentage of oocytes but not the percentage of cleaved embryos that became blastocysts suggests that oocytes that survive effects of heat shock and cleave have normal potential to develop to the blastocyst stage. Moreover, since heat shock did not affect caspase activity, it is likely that blastocysts from heat-shocked oocytes have normal developmental potential, at least as determined by caspase activity. Support: BARD FI-330-2002 and USDA Grants 2002-35203-12664 and 2001-52101-11318.


2015 ◽  
Vol 27 (1) ◽  
pp. 217
Author(s):  
E. Mellisho ◽  
V. Rivas ◽  
J. Ruiz ◽  
G. Mamani

In alpacas, improvement of reproductive efficiency of male camelids is limited by the small size of the testes, extended period of ejaculation, and low quality of semen. This study was designed to determine the effect of 2 sperm preparation treatments before IVF on the cleavage rate. The sperm was obtained by slicing the head of the epididymis of slaughtered male alpacas (n = 8), diluting in Tris-yolk-glycerol, and freezing with the slow-cooling method. Frozen semen straws per each male were thawed in a water bath at 37°C for 15 s and evaluated for percentage of progressive motility (32 ± 8.6%) and concentration (66.5 ± 24 × 106 sperm mL–1) post-thawing. Sperm selection by the swim-up method was performed by centrifugation at 1077 × g for 5 min with washing sperm medium eliminating the supernatant; sperm were settled in inclined tube with fertilization medium (without capacitating agent) for 60 min, after which 100 μL from the surface was recovered for use in IVF. The washing method consisted in repeated washing (twice) of sperm in washing sperm medium and fertilization medium by centrifugation at 1077 × g for 5 and 3 min, respectively, and recovery of 50 μL from the bottom of the tube for use in IVF. Sperm selected by swim-up or washing methods had similar characteristics of progressive motility (18 and 23%); however, the concentration was higher for the washing v. swim-up method (52 v. 14 × 106 sperm mL–1, respectively). Cumulus-oocyte complexes (COC) were recovered from 278 ovaries of alpacas killed at abattoirs and classified (Grade 1 and 2) for in vitro maturation (38.5°C at 5% CO2 in air for 27 h in 50 μL of 10 COC per drop). A total of 839 oocytes cultured for 27 h in maturation medium were partially stripped out of cumulus cells by gentle aspiration with a pipette. Sperm suspensions in Fert TALP medium (5 μL) from each treatment group were added to each fertilization drop with 10 oocytes per drop of 45 μL obtaining a final concentration of 10 × 106 sperm mL–1 and cultivated for 72 h until their evaluation. The data for the 13 repetitions of the rate of cleavage (2 to 8 cells) were converted to angular values (angle = arcsin √%) with the object of normalizing the distribution of the data; the analysis of variance was performed (complete randomised design with sub-sampling, P < 0.05) using SAS® version 8.0 for Windows. The rate of cleavage (cell division) did not show statistical differences (P = 0.67) for the swim-up method (37%; 155/421) v. washing method (35%; 147/418). The methods of sperm selection (swim-up and washing) did not affect the rate of IVF.


2013 ◽  
Vol 25 (1) ◽  
pp. 219
Author(s):  
J. H. Moon ◽  
S. J. Kim ◽  
J. T. Kang ◽  
S. J. Park ◽  
J. Y. Choi ◽  
...  

Seminal plasma consisting of carbohydrates, proteins, and lipids not only serves as a nutritive and protective medium for sperm cells but also play a pivotal role in inducing the tolerance to pre-existing immune cells as well as improving the intra-uterine conditions for implantation of fertilized embryos (Guerin et al. 2009 Hum. Reprod. Update 15, 517–535). However, the effects of seminal plasma in in vitro culture of fertilized embryos are unknown. In the present study, the seminal plasma was separated from the second fraction of a normal farm boar (n = 1) by centrifugation and filtered seminal plasma was stored at –30°C until use. In a preliminary experiment, the optimal activity of seminal plasma was evaluated by incubating the embryos for different time intervals. To investigate the developmental rates, electrically (EA) (triplicates, n = 490) or chemically (CA) (quintuplicates, n = 599) activated 2-day-old porcine embryos were incubated for 3 h in PZM-5 medium (Funakoshi Co., Tokyo, Japan, Catalog no. IFP0410P) containing 0% (EA: n = 122 and CA: n = 152), 0.1% (EA: n = 123 and CA: n = 148), 0.5% (EA: n = 122 and CA: n = 150), or 1% (EA: n = 123 and CA: n = 149) seminal plasma. Similarly, the developmental rate of chemically activated 2-day-old somatic cell nuclear transferred porcine embryos (quadruplicates, n = 239) was studied after incubation with 0% (n = 119) or 0.1% (n = 120) seminal plasma for 3 h. A significant difference was noticed only in the rate of blastocyst formation in the chemically activated embryos treated with 0.1% seminal plasma (31.7 v. 24.8% in the 0% group, ANOVA; P < 0.05; Prism5, GraphPad Software Inc., La Jolla, CA, USA). None of the treatments showed a significant effect on the cleavage rate and cell numbers of blastocysts. In conclusion, the seminal plasma did not show any harmful effect on early embryos development. Furthermore, the seminal plasma (0.1%) improved the rate of blastocyst formation among the chemically activated nuclear transferred embryos. The results of this preliminary study suggest that the addition of seminal plasma during embryo transfer could increase the rate of pregnancy in pig. This study was supported by MKE (#10033839-2012-21), IPET (#311011-05-1-SB010), the Research Institute for Veterinary Science, and TS Corporation.


2015 ◽  
Vol 27 (1) ◽  
pp. 112 ◽  
Author(s):  
Y. H. Choi ◽  
I. C. Velez ◽  
B. Macías-García ◽  
K. Hinrichs

In equine cloning, the scarcity of equine oocytes places emphasis on development of the most efficient nuclear transfer (NT) methods possible. In other species, using oocytes matured for the shortest duration needed to reach metaphase II has increased NT efficiency. In the present study, we examined the effect of duration of oocyte maturation at the time of enucleation on equine cloned blastocyst production. Oocytes were collected from live mares by transvaginal ultrasound-guided aspiration of all visible follicles ≥5 mm in diameter. The oocytes were held overnight (16–22 h) at room temperature, matured in vitro, and reconstructed with donor cells as described in our previous study (Choi et al. 2013 Theriogenology 79, 791–796). In Experiment 1, oocytes were divided into 2 groups and matured for 20 or 24 h. After enucleation, oocytes were reconstructed by direct injection of donor cells. Reconstructed oocytes were held for 5 h and then activated by treatment with 5 μM ionomycin for 4 min, then injection with sperm extract, followed by incubation in 2 mM 6-DMAP for 4 h. The activated reconstructed oocytes were cultured in global human embryo culture medium under 5% CO2, 6% O2, and 89% N2 at 38.2°C for 7 to 11 days (20 mM glucose was added at Day 5) and blastocyst rate was recorded. Because a low maturation rate was found at 20 h in Experiment 1, in Experiment 2 oocytes were denuded at 20 h and those that were mature were enucleated and used for NT; those that had not cast out a polar body at 20 h were cultured for an additional 3 h (20 + 3h) and then evaluated for polar body formation and used for NT, which was conducted as in Experiment 1. Data were analysed by Fisher's exact test. In Experiment 1, 203 oocytes were collected in 46 aspiration sessions. The rate of oocyte maturation to metaphase II was significantly lower for oocytes cultured for 20 h (35/116, 30%), than for those cultured for 24 h (47/80, 59%). However, the rate of blastocyst development was significantly higher for oocytes cultured for 20 h (11/27, 41%) than for 24 h (2/38, 5%). In Experiment 2, 89 oocytes were collected in 18 aspiration sessions. After 20 h of maturation culture, 22 oocytes were mature (25%). After an additional 3 h of culture, 21 additional oocytes had matured. There were no significant differences between the two treatments (20 and 20 + 3h) in reconstruction rates (77%, 17/22, and 90%, 19/21, respectively) or blastocyst rates (24%, 4/17, and 32%, 6/19, respectively). These results indicate that duration of in vitro maturation, or the duration of presence of cumulus cells, influences blastocyst development after somatic cell NT in the horse. This appears to be due to a benefit of using oocytes immediately after they reach metaphase II; if this is ensured as in Experiment 2, the duration of maturation itself had no effect.This work was supported by the American Quarter Horse Foundation, the Link Equine Research Endowment Fund, Texas A&M University, and by Ms. Kit Knotts.


Zygote ◽  
2005 ◽  
Vol 13 (2) ◽  
pp. 177-185 ◽  
Author(s):  
A. Nader Fatehi ◽  
Bernard A.J. Roelen ◽  
Ben Colenbrander ◽  
Eric J. Schoevers ◽  
Bart M. Gadella ◽  
...  

The present study was conducted to evaluate the function of cumulus cells during bovine IVF. Oocytes within cumulus–oocyte complexes (COCs) or denuded oocytes (DOs) were inseminated in control medium, or DOs were inseminated in cumulus cell conditioned medium (CCCM). DOs exhibited reduced cleavage and blastocyst formation rates when compared with intact COCs. The reduced blastocyst formation rate of DOs resulted from reduced first cleavage but subsequent embryo development was not changed. Live-dead staining and staining for apoptotic cells revealed no differences in blastocysts from oocytes fertilized as COC or DO. Fertilization of DOs in CCCM partially restored the cleavage rate, suggesting that factors secreted by cumulus cells are important for fertilization but that physical contact between oocytes and cumulus cells is required for optimal fertilization and first cleavage. Exposure of COCs to hydrogen peroxide shortly before fertilization reduced the cleavage rate, but did not lead to enhanced death of cumulus cells or oocyte death. Exposure of DOs to hydrogen peroxide, however, resulted in oocyte death and a complete block of first cleavage, suggesting that cumulus cells protect the oocyte against oxidative stress during fertilization.


2009 ◽  
Vol 21 (1) ◽  
pp. 203
Author(s):  
Y. J. Kim ◽  
Y. P. Jeon ◽  
S. H. Hyun

Porcine embryos could be a valuable tool to study preimplantation development, implantation, and pregnancy, but to do this it is necessary to establish an efficient in vitro embryo production system. Because the cause of high mortality in embryos during preimplantation development is not clear, a noninvasive method of determining the developmental potential of cleavage-stage embryos is needed. The objective was to evaluate the developmental potential of Day 2 embryos in a porcine in vitro fertilization (IVF) system. Specifically, this study was conducted to examine the relationship between embryo morphology 48 h after IVF on rates of blastocyst formation 5 days later. To prepare in vitro maturation (IVM) of porcine oocytes, cumulus–oocyte complexes were obtained from slaughterhouse-derived ovaries and matured in M-199 medium supplemented with 10% pig follicular fluid and 0.57 mm cysteine for 44 h and then freed from cumulus cells. After IVM, cumulus-free oocytes were coincubated with frozen–thawed sperm (2 × 106 cells mL–1) and 2 mm caffeine for 6 h. Inseminated embryos were cultured in NCSU-23 medium that was supplemented with 0.5 mm pyruvate and 0.5 mm lactate. Data were analyzed by ANOVA and Duncan’s test (P < 0.05). Morphology data on a total of 919 embryos were analyzed retrospectively. Forty-eight hours after insemination, embryos were classified into the following 5 groups based on the cleavage state: 1 cell, 2 cells, 4 cells, 5 to 8 cells, and fragmentation. These groups were cultured another 120 h and then evaluated for blastocyst formation. Blastocyst formation rates were significantly higher in the 4-cell (38.07%) and 5- to 8-cell (40.65%) cleaving groups than in the other groups (P < 0.05). In contrast, the 2-cell and fragmentation groups produced 7.5 and 2.9% blastocysts, respectively. Data suggest that embryos reaching 4 cells and 5 to 8 cells by 48 h after insemination have high developmental competence, and this parameter may be useful to predict the development of preimplantation embryos and their ability to establish pregnancy. This work was supported by a grant (No. 20070301034040) from the BioGreen 21 program, Rural Development Administration, Republic of Korea.


2005 ◽  
Vol 17 (2) ◽  
pp. 164 ◽  
Author(s):  
S. Arat ◽  
H. Bagis ◽  
H. Odaman Mercan ◽  
A. Dinnyes

There are few reports on the use of cells from a dead mammal for nuclear transfer (NT). So far, most calves have been cloned from live adult cows or fresh fetal samples. The ability to produce cloned animals using postmortem tissue can provide an additional application to the field of NT. This study was conducted to investigate whether viable cells could be obtained from tissues chilled for 72 h and whether these cells could be used for NT. Bovine oocytes isolated from slaughterhouse ovaries were matured in TCM199 supplemented with 10% fetal calf serum (FBS), 50 μg/mL sodium pyruvate, 1% v:v penicillin-streptomycin (10,000 U/mL penicillin G, 10,000 μg/mL streptomycin), 10 ng/mL EGF, 0.5 μg/mL FSH, and 5 μg/mL LH. A cell line (MC) was established from leg muscle of a cow carcass stored at 0°C for 72 h. Tissues from muscle were cut into small pieces. Tissue explants were cultured in DMEM-F12 supplemented with 10% FBS at 37°C in 5% CO2 in air. Bovine granulosa cells (GC) were isolated from ovarian follicles and used for NT as control cells. Prior to NT, all somatic cells were allowed to grow to confluency (G1/G0) in DMEM-F12 medium supplemented with 10% FBS. Cumulus cells were removed by vortexing with hyaluronidase at 18 h after the start of maturation. Matured oocytes labeled with DNA fluorochrome Hoechst 33342 were enucleated under UV to ensure full removal of the chromatin. A single cell was inserted into the perivitelline space of the enucleated oocyte. Oocyte-cell couples were fused by a DC pulse of 133V/500 μm for 25 μs. After fusion, NT units were activated using a combination of calcium ionophore (5 μM), cytochalasin D (2.5 μg/mL) and cycloheximide (10 μg/mL) and cultured for 7 days in BARC or G1.3-G2.3 medium. Differences (developmental potential and cell numbers) among groups were analyzed by one-way ANOVA after arcsin square transformation. The results are summarized in Table 1. The results suggest that viable cells can be obtained from muscle of a cow carcass stored at cold temperature for 72 h and that these cells have ability to generate NT blastocysts at rates similar to those obtained with fresh GCs. In addition, G1.3 and G2.3 culture medium supported embryo development better than BARC medium. Table 1. In vitro development of NT embryos This study was supported by a grant from TUBITAK, Turkey (VHAG-1908 and Turkey-Hungary bilateral project VHAG-2022).


2010 ◽  
Vol 22 (1) ◽  
pp. 199
Author(s):  
L.-Y. Sung ◽  
C.-H. Chen ◽  
T.-A. Lin ◽  
L.-J. Sung ◽  
H.-Y. Su ◽  
...  

This study was designed to examine the effect of rabbit oocytes collected from oviducts v. follicles on the developmental potential of nuclear transplant (NT) embryos. Rabbit oocytes were flushed from the oviducts (oviduct oocytes) or collected from the ovarian Graafian follicles(follicular oocytes) of superovulated does at 12 h post-hCG injection (hpi). Cumulus cells were then removed from the oocytes by incubation in 0.5% hyaluronidase and pipetting. Oocyte enucleation was conducted in TCM-199 +10% fetal bovine serum (FBS) and confirmed under fluorescent microscopy. Skin fibroblasts from an adult rabbit were prepared and cultured to passage 8 to 10 before use as nuclear donors. A donor cell with a diameter of approximately 15 to 19 μm was transferred into the perivitelline space of an enucleated oocyte and subsequently fused with the recipient oocyte by applying 3 direct current pulses at 3.2 kV cm-1 for 20 μs per pulse. Fused oocytes were activated by the same electrical stimulation described above, and then cultured in TCM-199 + 10% FBS containing 2.0 mM 6-DMAP and 5 μg mL-1 cycloheximide for 1 h. Cloned embryos were cultured in 2.5% FBS B2 medium in 5% CO2 and 95% humidified air at 38.5°C for 3 d. Embryo development to cleavage (2- to 4-cell), 8-cell, and morula/blastocyst (Mor/BL) stages was evaluated. The data were analyzed by the General Linear Model procedure (SPSS 11.0, SPSS Inc., Chicago, IL, USA).The total number of oocytes collected per animal was 27.6 ± 1.3, with 47.8% from oviducts, and 52.2% from follicles. The percentage of oviduct oocytes that showed the first polar body was 98.3% (n = 150) at the time of collection, whereas follicular oocytes only had 54.8% at collection (n = 93), but it reached 92.4% when immature follicular oocytes were cultured for 3 h in vitro. The enucleation rates were similar between the follicular (82.7%) and the oviduct (79.1%) groups. Table 1 shows that a significantly higher fusion rate was found in follicular oocytes compared with that in the oviduct group (90.8 v. 63.4%; P < 0.05). There was no difference in the cleavage rate and Mor/BL development between the 2 groups, although the 8-cell(78.4 v. 63.9%; P = 0.11) and the overall efficiencies (30.6% v. 17.9%; P = 0.14) appeared higher in the follicular group. These results demonstrated that rabbit follicular oocytes at 12 hpi have potential equivalent or maybe better (fusion) than that with oviduct oocytes for promoting the preimplantational development of NT embryos. Table 1.The effect of follicular and oviduct oocytes on the development of rabbit NT embryos Supported by NIH1R43 RR023774-01A1 and 5R44HL091605-03.


2016 ◽  
Vol 28 (2) ◽  
pp. 163
Author(s):  
K. Uhde ◽  
H. T. A. van Tol ◽  
T. A. E. Stout ◽  
B. A. J. Roelen

Mammalian oocytes are surrounded by cumulus cells, forming a structure known as the cumulus-oocyte complex (COC). Cumulus cells play important protective functions during oocyte maturation, for example, protecting the oocyte against reactive oxygen species. However, it is not yet fully understood how the cumulus complex modulates the developmental competence of the enclosed oocyte. It was investigated whether direct contact between an oocyte and its cumulus cells is essential throughout the maturation process. To this end, bovine oocytes aspirated from ovarian follicles were matured in vitro. Eight hours after the onset of maturation the cumulus cells were removed, and the oocytes either placed back in the original medium or cultured further in fresh maturation medium. In all experiments, COCs/oocytes were matured for 23 h in M199 supplemented with 0.05 IU FSH and penicillin/streptomycin. All experiments were performed in triplicate, with 35 to 45 COCs per group. Student’s t-test was used for a paired comparison. Denudation after 8 h and return to the same maturation medium had no effect on the cleavage rate (93%) compared with culture without denudation (90.7%). Only if the oocytes were transferred to fresh medium did the cleavage rate decrease slightly (75.4%; P = 0.038). By contrast, blastocyst formation was reduced nearly four times if COCs were denuded before being returned to the medium, compared with controls (14% v. 50.8%; P < 0.001). If the oocytes were transferred to fresh medium after denudation, very few blastocysts resulted (0.9%; P < 0.001). In a second study, oocytes denuded immediately after removal from the follicle were matured in the absence or presence of cumulus cells in a Corning® Transwell® system. Culturing denuded oocytes in the presence of cumulus cells resulted in similar cleavage rates (83.5%) to control conditions (84.8%). However, blastocyst formation was markedly lower (4.3%) than for controls (29.6%; P = 0.003). We conclude that COCs secrete substances during the first 8 h of maturation that are beneficial for oocyte acquisition of developmental competence. Moreover, intimate contact between the cumulus cells and oocyte is essential. This work was supported by EU FP7 EpiHealthNet, PITN-GA-2012–317146.


Sign in / Sign up

Export Citation Format

Share Document