254 EFFECTS OF OXYGEN TENSION AND OOCYTE DENSITY DURING IN VITRO MATURATION ON THE LEVELS OF REACTIVE OXYGEN SPECIES IN BOVINE OOCYTES AND MATURATION MEDIUM

2013 ◽  
Vol 25 (1) ◽  
pp. 274
Author(s):  
A. B. Giotto ◽  
A. C. G. Guimarães ◽  
C. G. M. Gonçalves ◽  
N. P. Folchini ◽  
C. I. I. U. F. Machado ◽  
...  

The reactive oxygen species (ROS) produced by animal cells and at physiological levels are responsible for several cellular functions. However, when there is an imbalance between ROS production and the antioxidant system in the cell, oxidative stress occurs and causes severe cell damage. In oocytes, ROS can affect the dynamics of maturation and early embryo development processes. Oxygen tension and the density of oocytes by medium volume during in vitro maturation (IVM) can influence ROS production. The aim of this study was to evaluate the influence of the association between oxygen tension (5 or 20%) and different oocyte densities during IVM (1 : 10 or 1 : 20 oocytes µL–1 of medium) on the ROS levels in oocytes and medium. Bovine oocytes (n = 420) were obtained from slaughterhouse ovaries by aspiration of 2- to 8-mm follicles. Quality I and II oocytes (De Loss et al. 1989 Gamete Res. 24, 197–204) were homogeneously distributed into groups of 15 oocytes per treatment: Treatment (T) 1 = 1 : 10 in 5% of O2; T2 = 1 : 10 in 20% of O2; T3 = 1 : 20 in 5% of O2; and T4 = 1 : 20 in 20% of O2. The oocytes were matured in TCM-199 supplemented with 10% oestrous mare serum, 100 µg mL–1 of epidermal growth factor, 50 µg mL–1 of LH, 5 µg mL–1 of FSH, and 22 µg mL–1 of pyruvate for 22 to 24 h at 39°C, in 5% CO2 and saturated humidity. To assay ROS production, denuded oocytes and 60-µL samples of IVM medium were evaluated by the spectrofluorometric method with 2′7′-dichlorofluorescein-diacetate, in which the fluorescence intensity emission was considered an indicator of ROS production and measured by a spectrofluorophotometer. The ROS production in oocytes and in IVM medium was expressed as units of fluorescence (UF); data were analysed by ANOVA and Duncan’s test with a 5% level of significance. Seven replications were performed. In treatment groups T1 and T3, the ROS production in oocytes was higher (P < 0.05) than in oocytes of treatment groups T2 and T4 (13.53 and 18.78 UF v. 7.92 and 6.15 UF, respectively). The ROS production in IVM medium was higher in the T1 (23.86 UF) and T2 (24.12 UF) treatment groups than in the T3 (18.78 UF) and T4 (18.57 UF) treatment groups. These results suggest an increase in ROS production in IVM oocytes under a 5% O2 atmosphere in relation to a 20% O2 atmosphere, irrespective of the oocyte density by volume of IVM medium. On the other hand, the accumulation of ROS in IVM medium seemed higher when the oocyte density was 1 oocyte to 10 µL of IVM medium, independent of the oxygen tension used. A higher level of ROS in 5% O2 tension may be caused by competition for O2 between oocyte and cumulus cells, causing a reduction in O2 levels and changing the availability of O2 to energy generation in oocytes and consequently increasing ROS generation. In this respect, 5% O2 during IVM may contribute to the onset of oxidative stress in oocytes, which may compromise fertilization and early embryo development. Further research is necessary to clarify esterase activity in oocytes and the addition of exogenous peroxidase to validate the assay. Financial support: FAPERGS (1011575) and CNPq (501763/2009).

2012 ◽  
Vol 24 (1) ◽  
pp. 135 ◽  
Author(s):  
J. R. Prentice ◽  
J. Singh ◽  
M. Anzar

Vitrification is a rapid freezing method in which cells/tissues are frozen in a glass state without ice crystal formation. However, vitrification of bovine oocytes is challenging due to their complex structure and sensitivity to chilling. Oocytes at the germinal vesicle (GV) stage of maturation are thought to be less prone to chromosomal and microtubular damage during cryopreservation because no spindle is present and genetic material is contained within the nucleus. However, immature oocytes are thought to be more sensitive to osmotic stress and have lower cell membrane stability than mature, metaphase II (MII) stage oocytes. The present studies aimed to validate the in vitro culture system used in our laboratory and to evaluate the effect of vitrification of bovine cumulus-oocyte complexes (COC) at different meiotic stages on their in vitro maturation (IVM), cleavage and early embryo development. Analyses were conducted on each dataset with PROC GLIMMIX in SAS using binary distribution (for yes/no response variable) and considering replicate as a random factor. In Experiment 1, meiotic progression of oocytes was evaluated at different time intervals during IVM. The following COC stages were predominantly found at different IVM time intervals: GV (89%) at 0 h, GV (47%) and germinal vesicle breakdown (GVBD; 44%) at 6 h, metaphase I (MI; 90%) at 12 h and MII (84%) at 22 h (n > 62 oocytes at each time group). In Experiment 2, bovine COC at 0, 6, 12 and 22 h of IVM were exposed to vitrification solution (15% dimethyl sulfoxide + 15% ethylene glycol + 0.5 M sucrose + 20% CS in TCM-199), loaded onto a cryotop device and vitrified by plunging in liquid nitrogen. Following warming (1 min in 0.5 M sucrose + 20% CS in TCM-199), COC completed 22 h of IVM and the nuclear stage was evaluated with lamin A/C-4′6-diamidino-2-phenylindole staining. Upon completion of 22 h of IVM, 23, 23, 35 and 89% of oocytes from 0-, 6-, 12- and 22-h groups, respectively were detected at MII (P < 0.0001). In Experiment 3, cleavage and embryo development of oocytes vitrified at 0, 12 and 22 h of IVM were evaluated. The cleavage rate did not differ among vitrification groups (i.e. 14% at 0 h, 17% at 12 h and 14% at 22 h; P = 0.825). Cleavage and blastocyst rates were higher (P < 0.0001) in the non-vitrified (control) group than in vitrified groups (i.e. 73 vs 15% and 22 vs 0.3%, respectively). In conclusion, the maturation kinetics validated our in vitro culture system and vitrification adversely affected the ability of bovine oocytes to undergo in vitro maturation to the MII stage, in vitro fertilization and early embryo development. Vitrification of oocytes at GV, MI and MII stages of nuclear maturation did not differ in their subsequent survivability. This study was supported by the Canadian Animal Genetic Resources Program, Agriculture and Agri-Food Canada.


2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4277
Author(s):  
Angelo Bertani Giotto ◽  
Daniela Dos Santos Brum ◽  
Francielli Weber Santos ◽  
Antonio Carlos Galarça Guimarães ◽  
Cibele Garcia Moreira Gonçalves ◽  
...  

Oocyte maturation is the key factor affecting the fertilization and embryonic development. Factors such as oocyte density and oxygen tension can directly influence the IMV. Thus, the objective of this study was to evaluate the effect of the association of oxygen tensions (5% or 20%) with different oocyte densities (1:10?l or 1:20?l) in the in vitro maturation (IVM) of bovine oocytes on maturation and fertilization rates, ROS production and antioxidant activity. Three experiments were performed with bovine oocytes that were obtained from slaughterhouse ovaries. After selection, the oocytes were randomly distributed in four treatments: 1:10/5%; 1:10/20%; 1:20/5%and 1:20/20% for each experiment. In experiment I, nuclear maturation status and cytoplasmic maturation were evaluated through detection of the first polar body by immunofluorescence and the mitochondrial reorganization assay. In experiment II, ROS production and antioxidant activity were analyzed in oocytes and IVM medium after 24 h of maturation through detection of ROS, reduced glutathione (GSH) and Superoxide dismutase activity by spectrofluorimetric methods. In experiment III, fertilization was evaluated through pronucleus formation, sperm penetration with or without decondensation and polyspermy rates by immunofluorescence. In experiment I, the nuclear maturation and cytoplasmic maturation were similar among treatments (P>0.05). In experiment II, reactive oxygen species in oocytes were elevated in treatments with low oxygen tension which was independent of oocyte density (P<0.05). Additionally, ROS levels in IVM medium were higher in treatments with high oocyte density by volume of medium, which was independent of oxygen tension (P<0.05). In Experiment III, the fertilization and penetration rates were higher in the treatment with 20% oxygen tension and high oocyte density (P<0.05). Furthermore, a high incidence of polyspermy was observed in groups with high oxygen tension and low oocyte density (P<0.05). In conclusion, the results of this study indicate an interaction between oxygen tension and oocyte density, which increases ROS production in certain associations and subsequently influences the rates of in vitro fertilization of bovine oocytes. The improved rates of IVF were obtained when IVM was conducted using 20% oxygen tension and high oocyte density (1:20 ul).


2017 ◽  
Vol 44 (4) ◽  
pp. 288-293 ◽  
Author(s):  
Shiho Yamadera ◽  
Yuya Nakamura ◽  
Masahiro Inagaki ◽  
Isao Ohsawa ◽  
Hiromichi Gotoh ◽  
...  

Aim: To examine the effects of vitamin E-coated dialyzer on oxidative stress in vitro. Methods: A dialyzer with a synthetic polymer membrane (APS-11SA) and vitamin E-coated dialyzer (VPS-11SA) were connected to a blood tubing line, and U937 cells were circulated in the device. The circulating fluid was collected at 1, 2, 5, 10, 25, and 50 cycles, which are estimated numbers of passes through the dialyzer. Intracellular reactive oxygen species (ROS) production, malondialdehyde (MDA), and Cu/Zn-superoxide dismutase (SOD) were quantified. Results: Intracellular ROS production was increased in the first cycle by APS-11SA and was decreased throughout the experiment by VPS-11SA. Intracellular ROS production in the VPS-11SA device was lower, and MDA levels were decreased. MDA levels were lower during VPS-11SA processing than during APS-11SA processing. Cu/Zn-SOD levels remained unchanged. Conclusion: Our results highlight anti-oxidative-stress effects of a vitamin E-coated dialyzer.


Pathobiology ◽  
2021 ◽  
pp. 1-8
Author(s):  
Naoyuki Matsumoto ◽  
Daisuke Omagari ◽  
Ryoko Ushikoshi-Nakayama ◽  
Tomoe Yamazaki ◽  
Hiroko Inoue ◽  
...  

<b><i>Introduction:</i></b> Type-2 diabetes mellitus (T2DM) is associated with several systemic vascular symptoms and xerostomia. It is considered that hyperglycemia-induced polyuria and dehydration cause decreased body-water volume, leading to decreased saliva secretion and, ultimately, xerostomia. In T2DM, increased production of reactive oxygen species (ROS) causes tissue damage to vascular endothelial cells as well as epithelial tissue, including pancreas and cornea. Hence, a similar phenomenon may occur in other tissues and glands in a hyperglycemic environment. <b><i>Methods:</i></b> Salivary gland tissue injury was examined, using T2DM model mouse (db/db). Transferase‐mediated dUTP nick‐end labeling (TUNEL) was conducted to evaluate tissue injury. The levels of malondialdehyde (MDA) and 8-hydroxy-2′-deoxyguanosine, Bax/Bcl-2 ratio were measured as indicator of oxidative stress. Moreover, in vitro ROS production and cell injury was evaluated by mouse salivary gland-derived normal cells under high-glucose condition culture. <b><i>Results:</i></b> In vivo and in vitro analysis showed a higher percentage of TUNEL-positive cells and higher levels of MDA and 8-hydroxy-2′-deoxyguanosine in salivary gland tissue of db/db mice. This suggests damage of saliva secretion-associated lipids and DNA by hyperglycemic-induced oxidative stress. To analyze the mechanism by which hyperglycemia promotes ROS production, mouse salivary gland-derived cells were isolated. The cell culture with high-glucose medium enhanced ROS production and promotes apoptotic and necrotic cell death. <b><i>Conclusion:</i></b> These findings suggest a novel mechanism whereby hyperglycemic-induced ROS production promotes salivary gland injury, resulting in hyposalivation.


2004 ◽  
Vol 9 (1) ◽  
Author(s):  
M.G.L. PINTO ◽  
M.I.B. RUBIN ◽  
C.A.M. SILVA ◽  
T.F. HILGERT ◽  
M.F. SÁ FILHO ◽  
...  

O desenvolvimento embrionário de oócitos bovinos maturados in vitro (MIV) foi avaliado em meio suplementado com líquido folicular eqüino (Lfe). Foram distribuídos 1045 oócitos em 11 repetições formando três grupos tratamentos (T1, T2, T3) e um controle (C). O meio de maturação utilizado foi o TCM-199 acrescido de piruvato de sódio, hormônio folículo estimulante recombinante (rFSHh) e hormônio luteinizante equino (LHe). Suplementou-se esse meio com 10% de soro de égua em estro para o grupo controle e para T1, T2 e T3, o meio foi suplementado com 5, 10, e 20% de LFe, respectivamente. Os oócitos foram maturados in vitro (MIV) por 24h. A fecundação in vitro (FIV) foi realizada em meio Talp-Fert. A MIV e a FIV foram realizadas em estufa a 39ºC com 5% de CO2 em ar e umidade saturada. Os zigotos foram cultivados em meio SOFaaci, sob óleo mineral no interior de bolsas plásticas gaseificadas. As taxas de clivagem e de blastocistos foram observadas diariamente (D), e em D7, foram superiores (P0,05) às do grupo controle. Em D9, a taxa de blastocistos do T2 foi superior (P0,05). O LFe, na concentração de 10% pode ser utilizado, em substituição ao soro de égua em estro para suplementar o meio de MIV de oócitos bovinos. Equine follicular fluid on in vitro maturation of bovine oocytes Abstract Embryo development of bovine oocytes was evaluated using maturation medium supplemented with equine follicular fluid (eFF). One thousand and forty five (1045) oocytes were distributed in 11 replications forming three treatment groups (T1, T2 e T3) and one Control (C). TCM-199 added with sodium pyruvate, rFSHh and LHe was used as maturation medium. This medium was supplemented with 10% estrous mare serum for Control group, and 5, 10, and 20% eFF, respectively, for T1, T2 e T3 groups. In vitro maturation (IVM) of all groups was performed during 24h. In vitro fertilization (IVF) was performed in TALP-FERT medium. IVM and IVF were carried out in an incubator at 39ºC with 5% CO2 in air and saturated humidity. Zygotes were cultured in SOFaaci medium, under mineral oil in gasified bags. Cleavage and blastocyst rates were daily observed (D), and at D7, were higher (P0.05) for those from control group. At D9, blastocyst rate of T2 was higher (P0.05). The eFF, at a 10% concentration, can replace the use of estrous mare serum to supplement the IVM medium of bovine oocytes.


Zygote ◽  
2013 ◽  
Vol 23 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Olympia Pikiou ◽  
Anna Vasilaki ◽  
George Leondaritis ◽  
Nikos Vamvakopoulos ◽  
Ioannis E. Messinis

SummaryStudies on bovine oocytes have revealed that the activation of adenosine monophosphate activated protein kinase (AMPK) by millimolar concentrations of metformin controls nuclear maturation. Tuberous sclerosis complex 2 (TSC2) has been identified as a downstream target of AMPK. The objective of this study was to investigate the effects of addition of low concentrations of metformin (1 nM to 10 μM) on the percentage of cultured cumulus–oocyte complexes (COC) giving rise to cleavage-stage embryos and AMPK-mediated TSC2 activation. Metformin was supplemented either throughout in vitro embryo production (IVP) or only during in vitro fertilization (IVF). COC were matured in vitro, inseminated, and presumptive zygotes cultured for a further 72 h post insemination before the percentage of COC that gave rise to zygotes and early embryo development was assessed. The presence of TSC2 in bovine embryos and its possible AMPK-induced activation were assessed by immunocytochemistry. Metformin had a dose-dependent effect on the numbers of cultured COC that gave rise to embryos. Drug treatment either throughout IVP or only during IVF decreased the percentage of ≥8-cell embryos (1 μM, P < 0.05; 10 μM, P < 0.01; and 0.1 μM, 10 μM, P < 0.01, respectively) and increased the percentage of 2-cell embryos (10 μM, P < 0.01 and P < 0.05 respectively). The percentage of cultured COC that gave rise to zygotes was not affected by metformin. TSC2 is expressed in early embryos. Metformin (10 μM) either throughout IVP or during IVF only, increased AMPK-induced PhosphoS1387-TSC2 immunoreactivity (P < 0.01) and this increase corresponded to the total TSC2 protein levels expressed in cells. Our results suggest that there is a dose-dependent negative effect of metformin on the ability of oocytes to cleave following insemination, possibly mediated through an AMPK-induced activation of TSC2.


2015 ◽  
Vol 27 (1) ◽  
pp. 203
Author(s):  
I. Lindgren ◽  
P. Humblot ◽  
D. Laskowski ◽  
Y. Sjunnesson

Dairy cow fertility has decreased during the last decades, and much evidence indicates that metabolic disorders are an important part of this decline. Insulin is a key factor in the metabolic challenge during the transition period that coincides with the oocyte maturation and may therefore have an impact on the early embryo development. The aim of this study was to test the effect of insulin during oocyte maturation on early embryo development by adding insulin during the oocyte maturation in vitro. In this study, abattoir-derived bovine ovaries were used and cumulus-oocyte complexes (n = 991) were in vitro matured for 22 h according to standard protocols. Insulin was added during maturation in vitro as follows: H (10 µg mL–1 of insulin), L (0.1 µg mL–1 of insulin), or Z (0 µg mL–1 of insulin). After maturation, oocytes were removed and fixed in paraformaldehyde before staining. Click-it TUNEL assay (Invitrogen, Stockholm, Sweden) was used for apoptotic staining and DRAQ5 (BioNordika, Stockholm, Sweden) for nuclear staining (n = 132). Cumulus-oocyte complexes were evaluated using laser scanning confocal microscope (Zeiss LSM 510, Zeiss, Oberkochen, Germany). Five levels of scans were used to assess oocyte maturation (MII stage) and apoptosis. Because of incomplete penetration of the TUNEL stain (3–5 layers of cumulus cells), only the outer 2 layers of the cumulus complex were investigated regarding apoptosis. Apoptotic index was calculated as apoptotic cells/total cells visualised. Remaining oocytes were fertilized and cultured in vitro until Day 8. Day 7 and Day 8 blastocyst formation was assessed as well as blastocyst stage and grade. Effect of insulin treatment on variables was analysed by ANOVA following arc sin √p transformation. Post-ANOVA comparisons between H+L group v. Z were performed by using the contrast option under GLM (Scheffé test). Results are presented as least squares means ± s.e. P-values ≤ 0.05 were considered as statistically significant. Insulin treatment during oocyte maturation in vitro had no significant effect on oocyte nuclear maturation or apoptotic index of the cumulus cells (Z: 0.052 ± 0.025, L: 0.039 ± 0.016, H: 0.077 ± 0.044, P > 0.05). No effect was seen on cleavage rates (Z: 0.85 ± 0.02, L: 0.85 ± 0.02, H: 0.89 ± 0.03, P > 0.05), but insulin treatment significantly decreased Day 7 rates from fertilized oocytes (Z: 0.19 ± 0.02, L: 0.14 ± 0.02, H: 0.12 ± 0.02, P < 0.05). This study also showed a significantly retarded developmental stage and decreased grade of blastocysts in insulin-treated groups taken together when compared with the control group (P < 0.05). In this study, no effect of insulin supplementation during in vitro maturation was seen on bovine oocyte maturation and apoptosis of cumulus cells, but blastocyst formation and development were negatively affected. Further studies are needed for understanding the relationship between the addition of insulin during maturation in vitro and impaired blastocyst formation. Insulin is a common supplement in the first phase of the first in vitro maturation medium for pig oocytes and is believed to have a beneficial effect on this species.Funding was received from Stiftelsen Nils Lagerlöfs Fond H12–0051-NLA.


2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4277 ◽  
Author(s):  
Angelo Bertani Giotto ◽  
Daniela Dos Santos Brum ◽  
Francielli Weber Santos ◽  
Antonio Carlos Galarça Guimarães ◽  
Cibele Garcia Moreira Gonçalves ◽  
...  

<p>Oocyte maturation is the key factor affecting the fertilization and embryonic development. Factors such as oocyte density and oxygen tension can directly influence the IMV. Thus, the objective of this study was to evaluate the effect of the association of oxygen tensions (5% or 20%) with different oocyte densities (1:10?l or 1:20?l) in the <em>in vitro </em>maturation (IVM) of bovine oocytes on maturation and fertilization rates, ROS production and antioxidant activity. Three experiments were performed with bovine oocytes that were obtained from slaughterhouse ovaries. After selection, the oocytes were randomly distributed in four treatments: 1:10/5%; 1:10/20%; 1:20/5%and 1:20/20% for each experiment. In experiment I, nuclear maturation status and cytoplasmic maturation were evaluated through detection of the first polar body by immunofluorescence and the mitochondrial reorganization assay. In experiment II, ROS production and antioxidant activity were analyzed in oocytes and IVM medium after 24 h of maturation through detection of ROS, reduced glutathione (GSH) and Superoxide dismutase activity by spectrofluorimetric methods. In experiment III, fertilization was evaluated through pronucleus formation, sperm penetration with or without decondensation and polyspermy rates by immunofluorescence. In experiment I, the nuclear maturation and cytoplasmic maturation were similar among treatments (P&gt;0.05). In experiment II, reactive oxygen species in oocytes were elevated in treatments with low oxygen tension which was independent of oocyte density (P&lt;0.05). Additionally, ROS levels in IVM medium were higher in treatments with high oocyte density by volume of medium, which was independent of oxygen tension (P&lt;0.05). In Experiment III, the fertilization and penetration rates were higher in the treatment with 20% oxygen tension and high oocyte density (P&lt;0.05). Furthermore, a high incidence of polyspermy was observed in groups with high oxygen tension and low oocyte density (P&lt;0.05). In conclusion, the results of this study indicate an interaction between oxygen tension and oocyte density, which increases ROS production in certain associations and subsequently influences the rates of <em>in vitro </em>fertilization of bovine oocytes. The improved rates of IVF were obtained when IVM was conducted using 20% oxygen tension and high oocyte density (1:20 ul).</p>


Sign in / Sign up

Export Citation Format

Share Document