139 Effect of protein and calcium ionophore A23187 concentration on hyperactivated motility and acrosome status of stallion sperm

2019 ◽  
Vol 31 (1) ◽  
pp. 195
Author(s):  
I. Ortiz ◽  
H. Resende ◽  
M. Felix ◽  
C. Love ◽  
K. Hinrichs

In vitro fertilization does not occur readily in the horse. Fertilization can be achieved using sperm treated with the calcium ionophore A23187 (CaI), but rates are low and variable. In order to fertilize, it is thought that the sperm must show hyperactivated motility and undergo the acrosome reaction. The presence of protein in the media is thought to suppress the effect of CaI, but protein is needed for maintenance of sperm motility. Therefore, the objective of this study was to assess the effect of CaI in the presence or absence of protein on the acrosome and on hyperactivated motility of equine sperm. For this purpose, sperm from 4 stallions were exposed for 10min at 37°C to vehicle or to 1 (C1), 5 (C5) or 10 (C10) μM CaI, with (BSA) or without (N) 7mg mL−1 BSA. The sperm were then washed and incubated at 37°C for 2h. Total and hyperactivated motility were measured by computer-assisted semen analysis. Sperm were considered hyperactivated if curvilinear velocity was >180μm s−1, amplitude of lateral head displacement was >12μm, linearity was <30% and fractal dimension value was >1.3. The percentage of live acrosome-reacted sperm was measured by flow cytometry after staining with propidium iodide and Pisum sativum agglutinin. Data were analysed by repeated-measures 2-way ANOVA. Results were expressed as mean±standard error. Total motility in C5 and C10 treatments was significantly decreased in relation to control (BSA-vehicle) starting at 30min of incubation (35.42±13.57 to 28.20±13.10% v. 71.72±9.21%, respectively; P<0.05). Hyperactivated motility was significantly lower in C10, C5 and N-C1 than in control after 2h of incubation (1.46±0.64v. 3.10±0.58%, respectively). Live acrosome-reacted sperm were significantly higher (P<0.05) for BSA-C5 (14.04±1.99%) and BSA-C10 (14.85±2.52%) than for control (7.50±1.62%) after 2h of incubation. The exposure to sperm of concentrations ≥5μM CaI was associated with loss of motility from 30min of incubation on. However, 2h of incubation after ≥5 μM CaI in the presence of BSA were needed to increase the percentage of live acrosome-reacted sperm. This mismatch between motility and acrosome response helps to clarify the reasons for the variable effect of sperm CaI treatment on equine IVF. Further studies measuring calcium influx and assessing the effect of sperm pre-incubation on CaI response are needed to explore mechanisms for equine in vitro sperm capacitation.

2001 ◽  
Vol 13 (6) ◽  
pp. 383 ◽  
Author(s):  
Jin-Tae Chung ◽  
Bruce R. Downey ◽  
Robert F. Casper ◽  
Ri-Cheng Chian

This study examined the fertilization, early developmental competence and capacity for parthenogenetic activation of bovine oocytes matured in vitro after centrifugation. Immature oocytes were cultured in tissue culture medium 199 supplemented with 10% fetal bovine serum and 75 mIU mL–1 FSH + LH at 5% CO2 to facilitate maturation. After culture for 24 or 30 h, the metaphase-II stage oocytes were centrifuged at 3000, 5000, 7000 or 10000g for 5 min before in vitro fertilization or parthenogenetic activation. Frozen–thawed bull semen was used for in vitro fertilization. For parthenogenetic activation, the oocytes were exposed to 20 M calcium ionophore A23187 for 5 min at room temperature. Fertilization rates were not different between control and treatment groups (87.7% v. 74.6%, 73.4%, 75.9% and 76.4% respectively). Also, there were no differences in early embryonic development between control and treatment groups (rates of blastocyst formation were 21.1% v. 20.2%, 28.8%, 31.2% and 24.1% respectively). When the oocytes were centrifuged at various speeds alone, the activation rate of oocytes was significantly higher (P<0.05) in the 10 000g treatment group compared with control (10.8% v. 0.0%). There were no differences in the activation rates of oocytes between control and treatment groups at speeds up to 7000g (70.9% v. 71.9%, 78.3% and 77.2% respectively) after centrifugation and stimulation with Ca2+-ionophore. However, the activation rate of oocytes was significantly higher (P<0.05) in the 10 000g treatment group compared with control (70.9% v. 83.1%). In addition, the percentage of activated oocytes with diploid formation was significantly higher in the oocytes after centrifugation at 10 000g and stimulation with calcium ionophore A23187 than in the control (18.4% v. 7.1%). These results indicate that centrifugation of oocytes matured in vitro has no detrimental effect on fertilization and subsequent early embryonic development. They also indicate that the oocytes might be parthenogenetically activated after centrifugation and that high-speed centrifugation may induce activation of some oocytes. The results suggest that the optimal speed for centrifugation of bovine oocytes might be ≤7000g to enhance the visibility of nuclear elements for further micromanipulation.


2008 ◽  
Vol 20 (1) ◽  
pp. 181
Author(s):  
M. R. Hudson ◽  
G. E. Seidel Jr ◽  
E. L. Squires ◽  
B. E. Spizzirri ◽  
D. J. Walker ◽  
...  

In vitro fertilization in the horse does not work reliably. Several methods of capacitating sperm in other species fail in the horse. The goal of this experiment was to develop a method to capacitate equine spermatozoa using calcium ionophore A23187 or phosphatidylcholine 12 (PC12). We also studied effects of maturing bovine oocytes for 24 or 28 h on fertilizability by capacitated equine sperm, hypothesizing that longer maturation would yield oocytes more easily fertilized by equine spermatozoa. Two sets of bovine oocytes were aspirated from 3 to 8 mm follicles of abattoir ovaries 4 h apart, but fertilized at the same time. On the day of fertilization, semen from 1 of 3 stallions was collected, evaluated, and centrifuged through 33% Percoll to remove seminal plasma. The resultant pellet was extended to 5 × 107 cells mL–1 in M199 containing 0.6% BSA, 2 mm caffeine, and 5 mm CaCl2. Sperm were treated with A23187 (1 or 3 μm) or PC12 (40 or 70 μm) or both A23187 and PC12 (1 μm/40 μm) in 500- μL aliquots. Sperm were incubated at 39°C for 10 min (for A23187 and combination treatments) or 15 min (for PC12 treatments), and then diluted 1:20 for fertilization. Oocytes from each maturation time were fertilized using the same semen preparation for each treatment. Oocytes and sperm were incubated together for 18 h in FCDM in 5% CO2 at 39°C (De La Torre-Sanchez et al. 2006 Reprod. Fertil. Devel. 18, 585–596). Presumptive zygotes were cultured for 30 h in CDM-1, vortexed to remove cumulus cells, and evaluated for cleavage. Oocytes were also co-incubated with killed sperm to determine the level of parthenogenesis. Cleaved embryos were stained with orcein to ensure that each cell had a nucleus. Number of cell divisions were recorded as 0 for a 1-cell, 1 for a 2-cell, 1.5 for a 3-cell, etc. More oocytes cleaved after 28 h (18%) than 24 h (14%) maturation (P < 0.01). Sperm of Stallion 1 resulted in higher overall cleavage (24%) than Stallions 2 or 3 (11 and 12%; P < 0.01). Highest cleavage was seen with 28 h maturation and 70 μm PC12 and 3 μm A23187 (27 and 24%, respectively). The most cell divisions were seen with 28 h maturation and 70 μm PC12 (0.48); 28 of the 49 cleaved in this treatment reached ≥4-cell stage. In conclusion, both A23187 and PC12 were able to capacitate equine sperm in a dose-dependent manner as determined from cleavage of bovine oocytes matured for 28 h; maturation for the conventional 24 h was an inferior model for this purpose. Table 1. Mean responses of bovine oocytes fertilized by equine sperm


2000 ◽  
Vol 148 (3) ◽  
pp. 481-494 ◽  
Author(s):  
Elizabeth Hong-Geller ◽  
Richard A. Cerione

We have expressed dominant-active and dominant-negative forms of the Rho GTPases, Cdc42 and Rac, using vaccinia virus to evaluate the effects of these mutants on the signaling pathway leading to the degranulation of secretory granules in RBL-2H3 cells. Dominant-active Cdc42 and Rac enhance antigen-stimulated secretion by about twofold, whereas the dominant-negative mutants significantly inhibit secretion. Interestingly, treatment with the calcium ionophore, A23187, and the PKC activator, PMA, rescues the inhibited levels of secretion in cells expressing the dominant-negative mutants, implying that Cdc42 and Rac act upstream of the calcium influx pathway. Furthermore, cells expressing the dominant-active mutants exhibit elevated levels of antigen-stimulated IP3 production, an amplified antigen-stimulated calcium response consisting of both calcium release from internal stores and influx from the extracellular medium, and an increase in aggregate formation of the IP3 receptor. In contrast, cells expressing the dominant-negative mutants display the opposite phenotypes. Finally, we are able to detect an in vitro interaction between Cdc42 and PLCγ1, the enzyme immediately upstream of IP3 formation. Taken together, these findings implicate Cdc42 and Rac in regulating the exocytosis of secretory granules by stimulation of IP3 formation and calcium mobilization upon antigen stimulation.


1982 ◽  
Vol 48 (01) ◽  
pp. 049-053 ◽  
Author(s):  
C G Fenn ◽  
J M Littleton

SummaryEthanol at physiologically tolerable concentrations inhibited platelet aggregation in vitro in a relatively specific way, which may be influenced by platelet membrane lipid composition. Aggregation to collagen, calcium ionophore A23187 and thrombin (low doses) were often markedly inhibited by ethanol, adrenaline and ADP responses were little affected, and aggregation to exogenous arachidonic acid was actually potentiated by ethanol. Aggregation to collagen, thrombin and A23187 was inhibited more by ethanol in platelets enriched with saturated fatty acids than in those enriched with unsaturated fats. Platelets enriched with cholesterol showed increased sensitivity to ADP, arachidonate and adrenaline but this increase in cholesterol content did not appear to influence the inhibition by ethanol of platelet responses. The results suggest that ethanol may inhibit aggregation by an effect on membrane fluidity and/or calcium mobilization resulting in decreased activity of a membrane-bound phospholipase.


2007 ◽  
Vol 97 (03) ◽  
pp. 425-434 ◽  
Author(s):  
Dmitry Kireev ◽  
Nadezhda Popenko ◽  
Aleksei Pichugin ◽  
Mikhail Panteleev ◽  
Olga Krymskaya ◽  
...  

SummaryPlatelet microparticles (PMPs) are small vesicles released from blood platelets upon activation. The procoagulant activity of PMPs has been previously mainly characterized by theirability to bind coagulation factors VIII and Va in reconstructed systems. It can be supposed that PMPs can contribute to the development of thrombotic complications in the pathologic states associated with the increase of their blood concentration. In this study we compared procoagulant properties of calcium ionophore A23187-activated platelets and PMPs using several in-vitro models of hemostasis. Surface densities of phosphatidylserine, CD61, CD62P and factor X bound per surface area unit were determined by flow cytometry. They were 2.7-, 8.4-, 4.3-, and 13-fold higher for PMPs than for activated platelets, respectively. Spatial clot growth rate (Vclot) in the reaction-diffus ion experimental model and endogenous thrombin potential (ETP) were determined in plasma, which was depleted of phospholipid cell surfaces by ultra-centrifugation and supplemented with activated platelets or PMPs at different concentrations. Both Vcllot and ETP rapidly increased with the increase of PMP or platelet concentration until saturation was reached. The plateau values of Vclot and ETP for activated platelets and PMPs were similar. In both assays, the procoagulant activity of one PMP was almost equal to that of one activated platelet despite at least two-orders-of-magnitude difference in their surface areas. This suggests that the PMP surface is approximately 50- to 100-fold more procoagulant than the surface of activated platelets.


2018 ◽  
Vol 38 (3) ◽  
Author(s):  
Lifeng Xiao ◽  
Li Jiang ◽  
Qi Hu ◽  
Yuru Li

Allergic inflammation is the foundation of allergic rhinitis and asthma. Although microRNAs are implicated in the pathogenesis of various diseases, information regarding the functional role of microRNAs in allergic diseases is limited. Herein, we reported that microRNA-302e (miR-302e) serves as an important regulator of allergic inflammation in human mast cell line, HMC-1 cells. Our results showed that miR-302e is the dominant member of miR-302 family expressed in HMC-1 cells. Moreover, the expression of miR-302e was significantly decreased in response to phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187 or ovalbumin (OVA) stimulation. Overexpression of miR-302e blocked PMA/A23187 or OVA induced the increase in inflammatory cytokines levels, such as IL-1β, IL-6, tumor necrosis factor (TNF)-α and thymic stromal lymphopoietin, while miR-302 inhibition further promoted the release of these cytokines. Mechanistically, we found that miR-302e is a novel miRNA that targets RelA, a gene known to be involved in regulating inflammation, through binding to the 3′-UTR of RelA mRNA. Ectopic miR-302e remarkably suppressed the luciferase activity and expression of RelA, whereas down-regulation of miR-302e increased RelA luciferase activity and expression. Pharmacological inhibition of NF-κB reversed the augmented effect of miR-302e down-regulation on inflammatory cytokines level. Taken together, the present study demonstrates miR-302e limits allergic inflammation through inhibition of NF-κB activation, suggesting miR-302e may play an anti-inflammatory role in allergic diseases and function as a novel therapeutic target for the treatment of these diseases.


Sign in / Sign up

Export Citation Format

Share Document