Principles and guidelines for managing cattle grazing in the grazing lands of northern Australia: stocking rates, pasture resting, prescribed fire, paddock size and water points – a review

2014 ◽  
Vol 36 (2) ◽  
pp. 105 ◽  
Author(s):  
L. P. Hunt ◽  
J. G. McIvor ◽  
A. C. Grice ◽  
S. G. Bray

Beef cattle grazing is the dominant land use in the extensive tropical and sub-tropical rangelands of northern Australia. Despite the considerable knowledge on land and herd management gained from both research and practical experience, the adoption of improved management is limited by an inability to predict how changes in practices and combinations of practices will affect cattle production, economic returns and resource condition. To address these issues, past Australian and international research relating to four management factors that affect productivity and resource condition was reviewed in order to identify key management principles. The four management factors considered were stocking rates, pasture resting, prescribed fire, and fencing and water point development for managing grazing distribution. Four management principles for sound grazing management in northern Australia were formulated as follows: (1) manage stocking rates to meet goals for livestock production and land condition; (2) rest pastures to maintain them in good condition or to restore them from poor condition to increase pasture productivity; (3) devise and apply fire regimes that enhance the condition of grazing land and livestock productivity while minimising undesirable impacts; and (4) use fencing and water points to manipulate grazing distribution. Each principle is supported by several more specific guidelines. These principles and guidelines, and the supporting research on which they are based, are presented.

2004 ◽  
Vol 26 (1) ◽  
pp. 49 ◽  
Author(s):  
N. D. MacLeod ◽  
A. J. Ash ◽  
J. G. McIvor

Beef cattle grazing is the dominant economic use of the tropical woodlands of northern Australia. Land condition has declined over a large part of the region as a result of over-utilisation of pastures through poor management of grazing, fire and vegetation. While often assumed to be the case, there is little empirical evidence to support a link between deteriorating land condition and reduced economic outcomes for livestock production. A model of a representative livestock enterprise near Charters Towers in northern Queensland is used in conjunction with a simulation of 100 trials that is consistent with long-term rainfall in the region to examine the relationship between stocking rates, animal production and economic outcomes. The present study supports a view that ecological and economic outcomes of grazing management do have some general linkages. However, the linkages are less direct than suggested by common definitions of resource degradation and simple stocking rate models. Key economic parameters include the reproductive performance of breeding herds, the level and duration of supplementary feeding required to meet seasonal feed shortages under different land condition and stocking rate regimes, and additional capital invested in larger herds when stocking rates are increased. An overgrazing spiral is hypothesised whereby there is a short-term economic incentive to exploit the natural capital of land in good condition by grazing at relatively high stocking rates. Should land condition deteriorate, a much lower stocking rate is warranted. In an extreme case of a shift to very poor land condition, there is limited scope for profitable production. The 100 year mean values of many production variables for good and moderate condition land for the range of stocking rates trialled are similar. The inherent variation in climatic conditions in the woodlands region and the ability and skills of managers may lead to the actual differences in these measures passing un-noticed before major land resource problems become apparent.


2012 ◽  
Vol 21 (3) ◽  
pp. 297 ◽  
Author(s):  
Owen F. Price ◽  
Jeremy Russell-Smith ◽  
Felicity Watt

Fire regimes in many north Australian savanna regions are today characterised by frequent wildfires occurring in the latter part of the 7-month dry season. A fire management program instigated from 2005 over 24 000 km2 of biodiversity-rich Western Arnhem Land aims to reduce the area and severity of late dry-season fires, and associated greenhouse gas emissions, through targeted early dry-season prescribed burning. This study used fire history mapping derived mostly from Landsat imagery over the period 1990–2009 and statistical modelling to quantify the mitigation of late dry-season wildfire through prescribed burning. From 2005, there has been a reduction in mean annual total proportion burnt (from 38 to 30%), and particularly of late dry-season fires (from 29 to 12.5%). The slope of the relationship between the proportion of early-season prescribed fire and subsequent late dry-season wildfire was ~–1. This means that imposing prescribed early dry-season burning can substantially reduce late dry-season fire area, by direct one-to-one replacement. There is some evidence that the spatially strategic program has achieved even better mitigation than this. The observed reduction in late dry-season fire without concomitant increase in overall area burnt has important ecological and greenhouse gas emissions implications. This efficient mitigation of wildfire contrasts markedly with observations reported from temperate fire-prone forested systems.


2010 ◽  
Vol 58 (4) ◽  
pp. 300 ◽  
Author(s):  
Jeremy Russell-Smith ◽  
Cameron P. Yates ◽  
Chris Brock ◽  
Vanessa C. Westcott

Few data are available concerning contemporary fire regimes and the responses of fire interval-sensitive vegetation types in semiarid woodland savanna landscapes of northern Australia. For a 10 300 km2 semiarid portion of Gregory National Park, in the present paper we describe (1) components of the contemporary fire regime for 1998–2008, on the basis of assessments derived from Landsat and MODIS imagery, (2) for the same period, the population dynamics, and characteristic fine-fuel loads associated with Acacia shirleyi Maiden (lancewood), an obligate seeder tree species occurring in dense monodominant stands, and (3) the fire responses of woody species, and fine-fuel dynamics, sampled in 41 plots comprising shrubby open-woodland over spinifex hummock grassland. While rain-year (July–June) rainfall was consistently reliable over the study period, annual fire extent fluctuated markedly, with an average of 29% being fire affected, mostly in the latter part of the year under relatively harsh fire-climate conditions. Collectively, such conditions facilitated short fire-return intervals, with 30% of the study area experiencing a repeat fire within 1 year, and 80% experiencing a repeat fire within 3 years. Fine fuels associated with the interior of lancewood thickets were characteristically small (<1 t ha–1). Fine fuels dominated by spinifex (Triodia spp.) were found to accumulate at rates equivalent to those observed under higher-rainfall conditions. Stand boundaries of A. shirleyi faired poorly under prevailing fire regimes over the study period; in 16 plots, juvenile density declined 62%, and adult stem density and basal area declined by 53% and 40%, respectively. Although the maturation (primary juvenile) period of A. shirleyi is incompletely known, assembled growth rate and phenology data indicated that it is typically >10 years. Of 133 woody species sampled, all trees (n = 26), with the exception of A. shirleyi, were resprouters, and 58% of all shrub species (n = 105) were obligate seeders, with observed primary juvenile periods <5 years. Assembled data generally supported observations made from other northern Australian studies concerning the responses of fire-sensitive woody taxa in rugged, sandstone-derived landscapes, and illustrated the enormous challenges facing ecologically sustainable fire management in such settings. Contemporary fire regimes of Gregory National Park are not ecologically sustainable.


2014 ◽  
Vol 23 (1) ◽  
pp. 117 ◽  
Author(s):  
Jonathan D. Bates ◽  
Robert N. Sharp ◽  
Kirk W. Davies

Woodland ecosystems of the world have been changed by land use demands, altered fire regimes, invasive species and climate change. Reduced fire frequency is recognised as a main causative agent for Pinus–Juniperus L. (piñon–juniper) expansion in North American woodlands. Piñon–juniper control measures, including prescribed fire, are increasingly employed to restore sagebrush steppe communities. We compared vegetation recovery following prescribed fire on Phase 2 (mid-succession) and Phase 3 (late-succession) Juniperus occidentalis Hook. (western juniper) woodlands in Oregon. The herbaceous layer on Phase 2 sites was comprised of native perennial and annual vegetation before and after fire. On Phase 3 sites the herbaceous layer shifted from native species to dominance by invasive Bromus tectorum L. (cheatgrass). After fire, shrubs on Phase 2 sites were comprised of sprouting species and Ceanothus velutinus Dougl. (snowbrush). On Phase 3 woodland sites the shrub layer was dominated by C. velutinus. The results suggest that Phase 2 sites have a greater likelihood of recovery to native vegetation after fire and indicate that sites transitioning from Phase 2 to Phase 3 woodlands cross a recovery threshold where there is a greater potential for invasive weeds, rather than native vegetation, to dominate after fire.


2019 ◽  
Vol 449 ◽  
pp. 117485
Author(s):  
Trey P. Wall ◽  
Brian P. Oswald ◽  
Kathryn R. Kidd ◽  
Ray L. Darville

1979 ◽  
Vol 3 (3) ◽  
pp. 114-118
Author(s):  
Carl C. Wilson ◽  
Edwin H. Collins

Abstract Fire losses occur in young conifer plantations in the southern United States each year primarily because of the hazardous grass and weeds surrounding the trees. Yet, the usual hazard-reduction technique of prescribed fire can't be used safely until the pine plantations reach at least six to eight feet in height. Cattle grazing will not only lessen the fuel hazard, but will also provide desirable forage without damaging the young trees if the livestock are well-managed.


2019 ◽  
Vol 139 (3) ◽  
pp. 393-406
Author(s):  
Sarah Cogos ◽  
Samuel Roturier ◽  
Lars Östlund

AbstractIn Sweden, prescribed burning was trialed as early as the 1890s for forest regeneration purposes. However, the origins of prescribed burning in Sweden are commonly attributed to Joel Efraim Wretlind, forest manager in the State Forest district of Malå, Västerbotten County, from 1920 to 1952. To more fully understand the role he played in the development of prescribed burning and the extent of his burning, we examined historical records from the State Forest Company’s archive and Wretlind’s personal archive. The data showed that at least 11,208 ha was burned through prescribed burning between 1921 and 1970, representing 18.7% of the Malå state-owned forest area. Wretlind thus created a new forestry-driven fire regime, reaching, during peak years, extents close to historical fire regimes before the fire suppression era, and much higher than present-day burning. His use of prescribed fire to regenerate forests served as a guide for many other forest managers, spreading to all of northern Sweden during the 1950–1960s. Our analysis of Wretlind’s latest accounts also shows how he stood against the evolutions of modern forestry to defend a forestry system based on the reproduction of natural processes, such as fire.


2021 ◽  
Vol 61 (1) ◽  
pp. 72
Author(s):  
M. K. Bowen ◽  
F. Chudleigh ◽  
D. Phelps

Context The large inter-annual and decadal rainfall variability that occurs in northern Australian rangelands poses major challenges for the profitable and sustainable management of grazing businesses. Aims An integrated bio-economic modelling framework (GRASP integrated with Breedcow and Dynama (BCD)) was developed to assess the effect of alternative grazing-management options on the profitability and sustainability of a beef cattle enterprise in the central-western Mitchell grasslands of Queensland over a multi-decadal time period. Methods Four grazing-management strategies were simulated over a 36-year period (1982–2017) in the GRASP pasture-growth model, using historic climate records for Longreach in central-western Queensland. Simulated annual stocking rates and steer liveweight-gain predictions from GRASP were integrated with published functions for mortality and conception rates in beef-breeding cattle in northern Australia, and then used to develop dynamic BCD cattle-herd models and discounted cash-flow budgets over the last 30 years of the period (1988–2017), following a 6-year model-equilibration period. The grazing-management strategies differed in the extent to which stocking rates were adjusted each year, from a common starting point in Year 1, in response to changes in the amount of forage available at the end of the summer growing season (May). They ranged from a low flexibility of ‘Safe stocking rate’ (SSR) and ‘Retain core herd’ (RCH) strategies, to a moderate flexibility of ‘Drought responsive’ (DR), to a ‘Fully flexible’ (FF) strategy. The RCH strategy included the following two herd-management scenarios: (1) ‘Retain herd structure’, where a mix of cattle were sold in response to low pasture availability, and (2) ‘Retain core breeders’, where steers were sold before reducing the breeder herd. Herd-management scenarios within the DR and FF strategies examined five and four options respectively, to rebuild cattle numbers and utilise available pasture following herd reductions made in response to drought. Key results Property-level investment returns expressed as the internal rate of return (IRR) were poor for SSR (–0.09%) and the three other strategies when the herd was rebuilt following drought through natural increase alone (RCH, –0.27%; DR, –1.57%; and FF, –4.44%). However, positive IRR were achieved when the DR herd was rebuilt through purchasing a mix of cattle (1.70%), purchasing pregnant cows (1.45%), trading steers (0.50%) or accepting cattle on agistment (0.19%). A positive IRR of 0.70% was also achieved for the FF property when purchasing a mix of cattle to rebuild numbers. However, negative returns were obtained when either trading steers (–2.60%) or agistment (–0.11%) scenarios were applied to the FF property. Strategies that were either inflexible or highly flexible increased the risk of financial losses and business failure. Property-level pasture condition (expressed as the percentage of perennial grasses; %P) was initially 69%P and was maintained under the DR strategy (68%P; average of final 5 years). The SSR strategy increased pasture condition by 25% to 86%P, while the RCH and FF strategies decreased pasture condition by 29% (49%P) and 65% (24%P) respectively. Conclusions In a highly variable and unpredictable climate, managing stocking rates with a moderate degree of flexibility in response to pasture availability (DR) was the most profitable approach and also maintained pasture condition. However, it was essential to economic viability that the property was re-stocked as soon as possible, in line with pasture availability, once good seasonal conditions returned. Implications This bio-economic modelling analysis refines current grazing-management recommendations by providing insights into both the economic and sustainability consequences of stocking-rate flexibility in response to fluctuating pasture supply. Caution should be exercised in recommending either overly conservative safe stocking strategies that are inflexible, or overly flexible stocking strategies, due to the increased risk of very poor outcomes.


Sign in / Sign up

Export Citation Format

Share Document