Wettability of soil aggregates from cultivated and uncultivated Ustolls and Usterts

Soil Research ◽  
2004 ◽  
Vol 42 (2) ◽  
pp. 163 ◽  
Author(s):  
Anna Eynard ◽  
Thomas E. Schumacher ◽  
Michael J. Lindstrom ◽  
Douglas D. Malo ◽  
Robert A. Kohl

Soil organic matter can modify the interaction of clay minerals with water, limiting the rate of water intake of swelling clays and stabilising soil aggregates. Soil structural stability and organic C content usually decrease with cultivation. Faster wetting increases stresses on aggregates and decreases stability. Aggregate wettabilities of prairie soils under 3 different management systems (grassland, no-till, and conventional-till) were compared in the Northern Great Plains of the USA. Six Ustolls and 2 Usterts were selected as replications along the Missouri River. Wettability was measured as water drop penetration time (WDPT) and as rate of water intake under 30 and 300 mm tension. At low tension, aggregates from both cultivated fields and uncultivated grasslands showed similar wettability. Water intake in grass aggregates was attributed to a greater amount of stable pores relative to cultivated aggregates. In cultivated aggregates, slaking created planes of failure that allowed rapid water entry. Differences of wettability between management systems at 300 mm tension (in Ustolls, grasslands had greater wettability than cultivated soils, 0.24 v. 0.17 g water/h.g dry soil) and between soil orders (Usterts had longer WDPT than Ustolls, 2.9 v. 1.7 s) were explained by both clay and organic C contents. Simple measurements of aggregate wettability may be effectively used for soil quality characterisation. Aggregate wettability is a desirable property for agricultural soils when it is related to stable porosity, as may be found in high organic matter soils (e.g. grasslands). Wettability is excessive when fast aggregate wetting results in aggregate destruction as observed in low organic matter cultivated soils.

2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Paloma Bescansa ◽  
Iñigo Virto ◽  
Oihane Fernández-Ugalde ◽  
María José Imaz ◽  
Alberto Enrique

The behaviour of earthworms, their role in organic matter incorporation into the soil, and the influence of aridity in such processes in arid and semiarid regions have scarcely been studied. In this study, physico-chemical analyses of the casts and the surrounding no-till agricultural soils of three experimental sites representing an aridity gradient in Navarre (NW Spain) were done. The casts were formed by the activity of the only anecic species,Scherotheca gigas(Dugès, 1828), ubiquitous in no-till soils in this region. We observed a significant depletion of clay and higher concentration of total organic C and labile C in the form of particulate organic matter (POM) in the casts as compared to the surrounding soil, suggesting selective ingestion of soil byS. gigas. This, together with the observation of increased concentration in POM with increasing aridity, suggests a major role of this species in the observed progressive gains of organic C stocks in no-till soils in the region.


2016 ◽  
Vol 64 (2) ◽  
pp. 111-120 ◽  
Author(s):  
Miroslav Fér ◽  
Martin Leue ◽  
Radka Kodešová ◽  
Horst H. Gerke ◽  
Ruth H. Ellerbrock

Abstract The organo-mineral coatings of soil aggregates, cracks, and biopores control sorption and macropore-matrix exchange during preferential flow, in particular in the clay-illuvial Bt-horizon of Luvisols. The soil organic matter (SOM) composition has been hypothesized to explain temporal changes in the hydraulic properties of aggregate surfaces. The objective of this research was to find relations between the temporal change in wettability, in terms of droplet infiltration dynamics, and the SOM composition of coated and uncoated aggregate surfaces. We used 20 to 40 mm sized soil aggregates from the Bt2 horizon of a Haplic Luvisol from loess that were (i) coated, (ii) not coated (both intact), and (iii) aggregates from which coatings were removed (cut). The SOM composition of the aggregate surfaces was characterized by infrared spectroscopy in the diffuse reflection mode (DRIFT). A potential wettability index (PWI) was calculated from the ratio of hydrophobic and hydrophilic functional groups in SOM. The water drop penetration times (WDPT) and contact angles (CA) during droplet infiltration experiments were determined on dry and moist aggregate samples of the three types. The decrease in the CA with time was described using the power function (CA(t) = at−b). For dry aggregates, the WDPT values were larger for coated as compared to uncoated regions on the aggregate surfaces, and increased with increasing PWI value (R2 = 0.75). The a parameter was significantly related to the WDPT (R2 = 0.84) and to the PWI (R2 = 0.64). The relations between the b parameter and the WDPT (R2 = 0.61) and the PWI (R2 = 0.53) were also significant. The WDPT values of wet soil aggregates were higher than those of dry aggregates due to high water contents, which limited the droplet infiltration potential. At the wet aggregate surfaces, the WDPT values increased with the PWI of the SOM (R2 = 0.64). In contrast to dry samples, no significant relationships were found between parameters a or b of CA(t) and WDPT or PWI for wet aggregate surfaces. The results suggest that the effect of the SOM composition of coatings on surface wettability decreases with increasing soil moisture. In addition to the dominant impact of SOM, the wettability of aggregate surfaces could be affected by different mineralogical compositions of clay in coatings and interiors of aggregates. Particularly, wettability of coatings could be decreased by illite which was the dominant clay type in coatings. However, the influence of different clay mineral fractions on surface wettability was not due to small number of measurements (2 and 1 samples from coatings and interiors, respectively) quantified.


2001 ◽  
Vol 81 (3) ◽  
pp. 349-355 ◽  
Author(s):  
D. F. E. McArthur ◽  
P M Huang ◽  
L M Kozak

Research has suggested a link between the bioavailability of soil Cd and total soil organic matter. However, some research suggested a negative relationship between total soil organic matter and bioavailable soil Cd while other research suggested a positive relationship. This study investigated the relationship between soil Cd and both the quantity and quality of soil organic matter as influenced by long-term cultivation. Two Orthic Chernozemic surface soil samples, one from a virgin prairie and the other from an adjacent cultivated prairie, were collected from each of 12 different sites throughout southern Saskatchewan, Canada. The samples were analyzed for total organic C, total Cd, Cd availability index (CAI), and pH. The nature of the soil organic matter was investigated with 13C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy (13C CPMAS NMR). The total soil Cd, CAI, and total soil organic C of the cultivated soils were significantly lower than those of the virgin soils whereas the opposite trend was observed for the soil pH and the aromaticity of the organic C. The reduced CAI in the cultivated soils was related to the increase in both the soil pH and the aromaticity of the organic C. No relationship was found between the CAI and the soil organic C content, but a significant positive correlation was found between total organic C and total Cd in both the virgin and the cultivated soils. As well, a significant positive correlation was found between the fraction of total Cd removed from the soil after long-term cultivation and the corresponding fraction of organic C removed. Key words: Long-term cultivation, soil organic matter, 13C CPMAS NMR, cadmium


Soil Research ◽  
2018 ◽  
Vol 56 (6) ◽  
pp. 632 ◽  
Author(s):  
Kathryn Conrad ◽  
Ram C. Dalal ◽  
Ryosuke Fujinuma ◽  
Neal W. Menzies

Stabilisation and protection of soil organic carbon (SOC) in macroaggregates and microaggregates represents an important mechanism for the sequestration of SOC. Legume-based grass pastures have the potential to contribute to aggregate formation and stabilisation, thereby leading to SOC sequestration. However, there is limited research on the C and N dynamics of soil organic matter (SOM) fractions in deep-rooted legume leucaena (Leucaena leucocephala)–grass pastures. We assessed the potential of leucaena to sequester carbon (C) and nitrogen (N) in soil aggregates by estimating the origin, quantity and distribution in the soil profile. We utilised a chronosequence (0–40 years) of seasonally grazed leucaena stands (3–6 m rows), which were sampled to a depth of 0.3 m at 0.1-m intervals. The soil was wet-sieved for different aggregate sizes (large macroaggregates, >2000 µm; small macroaggregates, 250–2000 µm; microaggregates, 53–250 µm; and <53 µm), including occluded particulate organic matter (oPOM) within macroaggregates (>250 µm), and then analysed for organic C, N and δ13C and δ15N. Leucaena promoted aggregation, which increased with the age of the leucaena stands, and in particular the formation of large macroaggregates compared with grass in the upper 0.2 m. Macroaggregates contained a greater SOC stock than microaggregates, principally as a function of the soil mass distribution. The oPOM-C and -N concentrations were highest in macroaggregates at all depths. The acid nonhydrolysable C and N distribution (recalcitrant SOM) provided no clear distinction in stabilisation of SOM between pastures. Leucaena- and possibly other legume-based grass pastures have potential to sequester SOC through stabilisation and protection of oPOM within macroaggregates in soil.


2006 ◽  
Vol 21 (1) ◽  
pp. 49-59 ◽  
Author(s):  
B.J. Wienhold ◽  
J.L. Pikul ◽  
M.A. Liebig ◽  
M.M. Mikha ◽  
G.E. Varvel ◽  
...  

AbstractSoils perform a number of essential functions affecting management goals. Soil functions were assessed by measuring physical, chemical, and biological properties in a regional assessment of conventional (CON) and alternative (ALT) management practices at eight sites within the Great Plains. The results, reported in accompanying papers, provide excellent data for assessing how management practices collectively affect agronomic and environmental soil functions that benefit both farmers and society. Our objective was to use the regional data as an input for two new assessment tools to evaluate their potential and sensitivity for detecting differences (aggradation or degradation) in management systems. The soil management assessment framework (SMAF) and the agro-ecosystem performance assessment tool (AEPAT) were used to score individual soil properties at each location relative to expected conditions based on inherent soil-forming factors and to compute index values that provide an overall assessment of the agronomic and environmental impact of the CON and ALT practices. SMAF index values were positively correlated with grain yield (an agronomic function) and total organic matter (an agronomic and environmental function). They were negatively correlated with soil nitrate concentration at harvest (an indicator of environmental function). There was general agreement between the two assessment tools when used to compare management practices. Users can measure a small number of soil properties and use one of these tools to easily assess the effectiveness of soil management practices. A higher score in either tool identifies more environmentally and agronomically sustainable management. Temporal variability in measured indicators makes dynamic assessments of management practices essential. Water-filled pore space, aggregate stability, particulate organic matter, and microbial biomass were sensitive to management and should be included in studies aimed at improving soil management. Reductions in both tillage and fallow combined with crop rotation has resulted in improved soil function (e.g., nutrient cycling, organic C content, and productivity) throughout the Great Plains.


2020 ◽  
Author(s):  
Beatrice Giannetta ◽  
Ramona Balint ◽  
Daniel Said-Pullicino ◽  
César Plaza ◽  
Maria Martin ◽  
...  

&lt;p&gt;Redox-driven changes in Fe crystallinity and speciation may affect soil organic matter (SOM) stabilization and carbon (C) turnover, with consequent influence on global terrestrial soil organic carbon (SOC) cycling.&lt;span&gt;&amp;#160;&lt;/span&gt;Under reducing conditions, increasing concentrations of Fe(II) released in solution from the reductive dissolution of Fe (hydr)oxides may accelerate ferrihydrite transformation, although our understanding of the influence of SOM on these transformations is still lacking.&lt;span&gt;&amp;#160;&lt;/span&gt;&lt;/p&gt;&lt;p&gt;Here, we evaluated abiotic Fe(II)-catalyzed mineralogical changes in Fe (hydr)oxides in bulk soils and size-fractionated SOM pools (for comparison, fine silt plus clay, FSi+Cl, and fine sand, FSa) of an agricultural soil, unamended or amended with biochar, municipal solid waste compost, and a combination of both.&lt;span&gt;&amp;#160;&lt;/span&gt;&lt;/p&gt;&lt;p&gt;FSa fractions showed the most significant Fe(II)-catalyzed ferrihydrite transformations with the consequent production of well-ordered Fe oxides irrespective of soil amendment, with the only exception being the compost-amended soils. In contrast, poorly crystalline ferrihydrite still constituted &lt;em&gt;ca. &lt;/em&gt;45% of the FSi+Cl fractions of amended soils, confirming the that the higher SOM content in this fraction inhibits atom exchange between aqueous Fe(II) and the solid phase. Building on our knowledge of Fe(II)-catalyzed mineralogical changes in simple systems, our results evidenced that the mechanisms of abiotic Fe mineral transformations in bulk soils depend on Fe mineralogy, organic C content and quality, and organo-mineral associations that exist across particle-size SOM pools. Our results underline that in the fine fractions the increase in SOM due to organic amendments can contribute to limiting abiotic Fe(II)-catalyzed ferrihydrite transformation, while coarser particle-size fractions represent an understudied pool of SOM subjected to Fe mineral transformations.&lt;span&gt;&amp;#160;&lt;/span&gt;&lt;/p&gt;


2008 ◽  
Vol 22 (3) ◽  
pp. 486-492 ◽  
Author(s):  
Andrew W. Lenssen

In the semiarid northern Great Plains, the adoption of zero tillage improves soil water conservation, allowing for increased crop intensification and diversification. Zero-tillage crop production relies heavily on herbicides for weed management, particularly the herbicide glyphosate, increasing selection pressure for herbicide-resistant weeds. Barley is well adapted to the northern Great Plains, and may be a suitable herbicide-free forage crop in zero-tillage systems. A 2-yr field study was conducted to determine if planting date influenced crop and weed biomass, water use (WU), and water-use efficiency (WUE) of barley and weed seed production in three preplant weed management systems: (1) conventional preplant tillage with a field cultivator (TILL); (2) zero tillage with preemergence glyphosate application (ZTPRE); and (3) zero tillage without preemergence glyphosate (ZT). None of the systems included an in-crop herbicide. Planting dates were mid-April (early), late May (mid), and mid-June (delayed). Early planting of ZT barley resulted in excellent forage yields (7,228 kg/ha), similar to those from TILL and ZTPRE. Early planting resulted in a small accumulation of weed biomass, averaging 76 kg/ha, and no weed seed production regardless of preplant weed management system. Early planting resulted in higher WU than delayed planting, averaging 289 and 221 mm, respectively, across management systems and years. The WUE of crop and total biomass did not differ among preplant weed management systems at harvest from the early planting date. Delayed planting resulted in decreased forage yield with high amounts of weed biomass and seed production, especially in ZT. A pre-emergence glyphosate application was not necessary for early-planted ZT forage barley. Early planting of herbicide-free barley for forage can be an excellent addition to northern Great Plains cropping systems as part of a multitactic approach for improved weed and water management.


2008 ◽  
Vol 88 (5) ◽  
pp. 833-836 ◽  
Author(s):  
M A Liebig ◽  
J R Hendrickson ◽  
J D Berdahl ◽  
J F Karn

Intermediate wheatgrass [Thinopyrum intermedium (Host) Barkw. & D.R. Dewey subsp. intermedium] is a productive, high-quality perennial forage that lacks persistence under grazing. A study was conducted to evaluate the effects of three grazing times on soil bulk density, soil pH, and soil organic C under intermediate wheatgrass. Treatment effects on the three soil attributes were negligible, implying grazing time did not negatively impact intermediate wheatgrass beyond a threshold whereby critical soil functions were impaired. Findings from this study are important in the context of sustainable forage and cropping system management, where maintaining or improving critical soil functions are essential for enhancing agroecosystem sustainability. Key words: Seeded perennial forages, Northern Great Plains, soil organic C


2016 ◽  
Author(s):  
Frederick Büks ◽  
Philip Rebensburg ◽  
Peter Lentzsch ◽  
Martin Kaupenjohann

Abstract. Apart from physico-chemical interactions between soil components, microbial life is assumed to be an important factor of soil structure forming processes. Bacterial exudates, the entanglement by fungal hypae and bacterial pseudomycelia as well as fungal glomalin are supposed to provide the occlusion of particulate organic matter (POM) through aggregation of soil particles. This work investigates the resilience of POM occlusion in face of different microbial communities under controlled environmental conditions. We hypothesized that the formation of different communities would cause different grades of POM occlusion. For this purpose samples of a sterile sandy agricultural soil were incubated for 76 days in bioreactors. Particles of pyrochar from pine wood were added as POM analogue. One variant was inoculated with a native soil extract, whereas the control was infected by airborne microbes. A second control soil remained non-incubated. During the incubation, soil samples were taken for taxon-specific qPCR to determine the abundance of Eubacteria, Fungi, Archaea, Acidobacteria, Actinobacteria, α-Proteobacteria and β-Proteobacteria. After the incubation soil aggregates (100–2000 μm) were collected by sieving and disaggregated using ultrasound to subject the released POM to an analysis of organic carbon (OC). Our results show, that the eubacterial DNA of both incubated variants reached a similar concentration after 51 days. However, the structural composition of the two communities was completely different. The soil-born variant was dominated by Acidobacteria, Actinobacteria and an additional fungal population, whereas the air-born variant mainly contained β-Proteobacteria. Both variants showed a strong occlusion of POM into aggregates during the incubation. Yet, despite the different population structure, there were only marginal differences in the release of POM along with the successive destruction of soil aggregates by ultrasonication. This leads to the tentative assumption that POM occlusion in agricultural soils could be resilient in face of changing microbial communities.


Sign in / Sign up

Export Citation Format

Share Document