Competitive sorption reactions between phosphorus and organic matter in soil: a review

Soil Research ◽  
2005 ◽  
Vol 43 (2) ◽  
pp. 189 ◽  
Author(s):  
C. N. Guppy ◽  
N. W. Menzies ◽  
P. W. Moody ◽  
F. P. C. Blamey

The incorporation of organic matter (OM) in soils that are able to rapidly sorb applied phosphorus (P) fertiliser reportedly increases P availability to plants. This effect has commonly been ascribed to competition between the decomposition products of OM and P for soil sorption sites resulting in increased soil solution P concentrations. The evidence for competitive inhibition of P sorption by dissolved organic carbon compounds, derived from the breakdown of OM, includes studies on the competition between P and (i) low molecular weight organic acids (LOAs), (ii) humic and fulvic acids, and (iii) OM leachates in soils with a high P sorption capacity. These studies, however, have often used LOAs at 1–100 mm, concentrations much higher than those in soils (generally <0.05 mm). The transience of LOAs in biologically active soils further suggests that neither their concentration nor their persistence would have a practical benefit in increasing P phytoavailability. Higher molecular weight compounds such as humic and fulvic acids also competitively inhibit P sorption; however, little consideration has been given to the potential of these compounds to increase the amount of P sorbed through metal–chelate linkages. We suggest that the magnitude of the inhibition of P sorption by the decomposition products of OM leachate is negligible at rates equivalent to those of OM applied in the field. Incubation of OM in soil has also commonly been reported as reducing P sorption in soil. However, we consider that the reported decreases in P sorption (as measured by P in the soil solution) are not related to competition from the decomposition products of OM breakdown, but are the result of P release from the OM that was not accounted for when calculating the reduction in P sorption.

2008 ◽  
Vol 58 (8) ◽  
pp. 1535-1539 ◽  
Author(s):  
L. Sabina ◽  
B. Kus ◽  
H.-K. Shon ◽  
J. Kandasamy

Organic characterisation in rainwater was investigated in terms of dissolved organic carbon (DOC) and molecular weight distribution (MWD) after powdered activated carbon (PAC) adsorption. PAC adsorption was used as pretreatment to membrane filtration to reduce membrane fouling. The MW of organic matter in rainwater used in this study was in the range of 43,000 Da to 30 Da. Each peak of organic matter consisted of biopolymers (polysaccharides and proteins), humic and fulvic acids, building blocks, low MW acids (hydrolysates of humic substances), low MW neutrals and amphiphilics. Rainwater contained the majority of hydrophilic compounds up to 72%. PAC adsorption removed 33% of total DOC. The removal efficiencies of the hydrophobic and hydrophilic fractions after PAC adsorption were 50% and 27%, respectively. PAC adsorption was found to preferentially remove the hydrophobic fraction. The majority of the smaller MW of 1,100 Da, 820 Da, 550 Da, 90 Da and 30 Da was removed after PAC adsorption. The MFI values decreased from 1,436 s/L2 to 147 s/L2 after PAC adsorption. It was concluded that PAC adsorption can be used as a pretreatment to membrane filtration with rainwater.


1996 ◽  
Vol 34 (9) ◽  
pp. 157-164 ◽  
Author(s):  
Kim C.-H. ◽  
M. Hosomi ◽  
A. Murakami ◽  
M. Okada

Effects of clay on fouling due to organic substances and clay were evaluated by model fouling materials and kaolin. Model fouling materials selected were protein, polysaccharide, fulvic acid, humic acid and algogenic matter (EOM:ectracellular organic matter, microbial decomposition products) and kaolin was selected as the clay material. Polysulfone membrane (MWCO(Molecular Weight Cut-Off) 10,000, 50,000 and 200,000) was used as an ultrafiltration membrane. In particular, the flux measurement of solutions containing algogenic matter used an ultrafiltration membrane of MWCO 50,000. The flux of protein and polysaccharide with coexistence of kaolin increased in the case of the ratio of MW/MWCO being greater than one, but did not increase in the case of the MW/MWCO ratio being below one. In contrast, the flux of fulvic acid and humic acid with coextence of kaolin decreased regardless of the ratio of MW/MWCO. The addition of dispersion agent and coagulant in the organic substances and kaolin mixture solution changed the size distribution of kaolin, and resulted in a change of the flux. EOM and microbial decomposition products decreased with the increase of the fraction of organic matter having molecular weight more than MWCO of membrane. The flux of the algogenic organic matter with coexistence of kaolin decreased with the increase of the amount of kaolin. It was suggested that the decline of the flux with coexistence of kaolin was due to the change of the resistance of the kaolin cake layer corresponding to the change in kaolin size distribution with charge.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1067
Author(s):  
Aleksandra Ukalska-Jaruga ◽  
Romualda Bejger ◽  
Guillaume Debaene ◽  
Bożena Smreczak

The objective of this paper was to investigate the molecular characterization of soil organic matter fractions (humic substances (HS): fulvic acids-FAs, humic acids-HAs, and humins-HNs), which are the most reactive soil components. A wide spectrum of spectroscopic (UV–VIS and VIS–nearIR), as well as electrochemical (zeta potential, particle size diameter, and polydispersity index), methods were applied to find the relevant differences in the behavior, formation, composition, and sorption properties of HS fractions derived from various soils. Soil material (n = 30) used for the study were sampled from the surface layer (0–30 cm) of agricultural soils. FAs and HAs were isolated by sequential extraction in alkaline and acidic solutions, according to the International Humic Substances Society method, while HNs was determined in the soil residue (after FAs and HAs extraction) by mineral fraction digestion using a 0.1M HCL/0.3M HF mixture and DMSO. Our study showed that significant differences in the molecular structures of FAs, Has, and HNs occurred. Optical analysis confirmed the lower molecular weight of FAs with high amount of lignin-like compounds and the higher weighted aliphatic–aromatic structure of HAs. The HNs were characterized by a very pronounced and strong condensed structure associated with the highest molecular weight. HAs and HNs molecules exhibited an abundance of acidic, phenolic, and amine functional groups at the aromatic ring and aliphatic chains, while FAs mainly showed the presence of methyl, methylene, ethenyl, and carboxyl reactive groups. HS was characterized by high polydispersity related with their structure. FAs were characterized by ellipsoidal shape as being associated to the long aliphatic chains, while HAs and HNs revealed a smaller particle diameter and a more spherical shape caused by the higher intermolecular forcing between the particles. The observed trends directly indicate that individual HS fractions differ in behavior, formation, composition, and sorption properties, which reflects their binding potential to other molecules depending on soil properties resulting from their type. The determined properties of individual HS fractions are presented as averaged characteristics over the examined soils with different physico-chemical properties.


2011 ◽  
Vol 63 (9) ◽  
pp. 1795-1800 ◽  
Author(s):  
A. Y. Bagastyo ◽  
J. Keller ◽  
D. J. Batstone

Reverse osmosis membrane separation is the leading method for manufacturing potable purified water. It also produces a concentrate stream, namely reverse osmosis concentrates (ROC), with 10–20% of the water, and almost all other compounds. One method for further treating this stream is by coagulation with ferric chloride. This study evaluates removed organics in ROC treated with ferric chloride. Fractionation with ultrafiltration membranes allows separation of organics based on a nominal molecular weight. A stirred cell system was applied for serial fractionation to classify organic compounds into six groups of &lt;0.5 kDa, 0.5–1 kDa, 1–3 kDa, 3–5 kDa, 5–10 kDa and &gt;10 kDa. The study found that raw ROC is rich in low molecular weight compounds (&lt;1 kDa) with almost 50% of the organics. These compounds include soluble microbial products (SMPs) and smaller humic and fulvic acids as indicated by fluorescence scanning. Conversely, colour was mostly contributed by medium to large molecules of humic and fulvic acids (&gt;0.5 kDa). Organics and colour were reduced in all molecular groups at an optimum treatment dose 1.48 mM FeCl3 and a pH of 5. However, ferric seemed to effectively remove colour in all size ranges while residual nitrogen was found mostly in the &lt;1 kDa sizes. Further, the fluorescence indicated that larger humic and fulvic acids were removed with considerable SMPs remaining in the &lt;0.5 kDa.


1967 ◽  
Vol 47 (3) ◽  
pp. 245-250 ◽  
Author(s):  
M. Schnitzer

Twenty organic-soil samples of widely differing degrees of decomposition were extracted with 0.5 N NaOH solution under N2. Amounts of humic and of fulvic acids in the acidified extracts did not correlate significantly with pyrophosphate solubilities. This was thought to be due to interference in the separation scheme by relatively large amounts of ash constituents in the extracts. Since the "classical" fractionation of soil organic matter appears to involve essentially the "salting out" of higher molecular-weight humic from lower molecular-weight fulvic acids, an excessively high salt concentration during the separation should be avoided.To lower the concentration of inorganic constituents in the extracts, the samples were first pretreated with dilute HCl–HF solution and then extracted with 0.1 N NaOH rather than with 0.5 N NaOH. Under these conditions, amounts of fulvic acids in the acidified extracts showed a significant positive correlation (r = 0.52) with pyrophosphate solubilities of untreated extracts, whereas amounts of humic acids in the extracts exhibited a highly negative correlation (r = −0.57) with pyrophosphate solubilities. In the soils examined, increased humification was associated with increases in fulvic-acid but decreases in humic-acid concentrations.From the results of this and of earlier investigations done in this laboratory it appeared that the main mechanism governing humification in these soils was oxidative degradation, resulting ultimately in the formation of fulvic from humic acid.


2014 ◽  
Author(s):  
◽  
Pinkie Sobantu

This project arose out the need for a simple method to analyse NOM on a routine basis. Water samples were obtained from the Vaal dam, which is one of the dams used by a hydroelectric power station. Analysis was preceded by separation of NOM into the humic and non-humic portions. The humic portion was separated into two fractions by employing a non-ionic resin (DAX-8) to separate humic acid from fulvic acid. High performance size exclusion chromatography (HPSEC), equipped with an Ultraviolet( UV) detector and an Evaporative Light Scattering (ELS) detector connected in series, was used to obtain molecular weight distribution information and the concentration levels of the two acids. Mixed standards of polyethylene oxide/glycol were employed to calibrate the selected column. Suwanee River humic acid standard was used as a certified reference material. The molecular weight distributions (MWDs) of the isolated fractions of humic and fulvic acids were determined with ELSD detection as weight-average (Mw), number-average (Mn) and polydispersity (ρ) of individual NOM fractions. The Mw/Mn ratio was found to be less than 1.5 in all the fractions, indicating that they have a low and narrow size fraction. An increase in Mn and Mw values, with increasing wavelength for all three humic substances (HS) examined was observed. The HS, isolated from the dam water, was found to be about the same molecular weight as the International Humic Acid Standard (IIHSS). For the fulvic acid standard, the molecular weight was estimated to be around 7500 Da. Characterization of NOM was done to assist in the identification of the species present in the water. FTIR-ATR was used to as a characterization tool to identify the functional groups in the structure of the humic and fulvic acid respectively present in the Vaal Dam. Analysis of the infrared (IR) spectra indicated that the humic acids of the Vaal dam have phenolic hydroxyl groups, hydroxyl groups, conjugated double bond of aromatic family (C=C), and free carboxyl groups. The isolation method has proved to be applicable and reliable for dam water samples and showed to successfully separate the humic substances from water and further separate the humic substances into its hydrophobic acids, namely, humic and fulvic acids. It can be concluded that the Eskom Vaal dam composes of humic substance which shows that the technique alone gives a very good indication of the characteristics of water. The HPSEC method used, equipped with UV and ELSD was able to identify the molecular weight range of NOM present in source water as it confirmed that the Eskom Vaal dam contains humic substances as humic acid and fulvic acid and these pose a health concern as they can form disinfectant byproducts in the course of water treatment with chemicals. FTIR characterization was successful as important functional groups were clearly assigned. Lastly, the use of the TOC and DOC values to calculate SUVA was also a good tool to indicate the organic content in water. It is recommended to use larger amounts of water must be processed to obtain useful quantities of the humic and fulvic acid fractions.


2015 ◽  
Vol 2 (1) ◽  
pp. 73-78
Author(s):  
A. Fateev ◽  
D. Semenov ◽  
K. Smirnova ◽  
A. Shemet

Soil organic matter is known as an important condition for the mobility of trace elements in soils, their geo- chemical migration and availability to plants. However, various components of soil organic matter have differ- ent effect on these processes due to their signifi cant differences in structure and properties. Aim. To establish the role of humic and fulvic acids in the process of formation of microelement mobility in soils and their accu- mulation in plants. Methods. A model experiment with sand culture was used to investigate the release of trace elements from preparations of humic and fulvic acids and their uptake by oat plants. Results. It was found that among biologically needed elements humic acids are enriched with iron, fulvic acids – with zinc, and copper distribution between these two groups of substances may be characterized as even. These elements have un- equal binding power with components of soil organic matter, as evidenced by their release into the cultivation medium and accumulation in plants. In the composition of fulvic acids zink has the most mobility – up to 95 % of this element is in the form, accessible for plants; the lowest mobility was demonstrated by copper in the composition with humic acids, for which no signifi cant changes in the concentration of mobile forms in the substrate and in the introduction to the test culture were registered. Despite signifi cantly higher iron content in humic acids, the application of fulvic acids in the cultivation medium provides a greater increase in the con- centration of mobile forms of this element. Conclusions. The results confi rm the important role of organic sub- stances of fulvic nature in the formation of zinc and iron mobility in the soil and their accumulation in plants.


Sign in / Sign up

Export Citation Format

Share Document