Predicting the response of wheat (Triticum aestivum L.) to liquid and granular phosphorus fertilisers in Australian soils

Soil Research ◽  
2007 ◽  
Vol 45 (6) ◽  
pp. 448 ◽  
Author(s):  
T. M. McBeath ◽  
M. J. McLaughlin ◽  
R. D. Armstrong ◽  
M. Bell ◽  
M. D. A. Bolland ◽  
...  

Liquid forms of phosphorus (P) have been shown to be more effective than granular P for promoting cereal growth in alkaline soils with high levels of free calcium carbonate on Eyre Peninsula, South Australia. However, the advantage of liquid over granular P forms of fertiliser has not been fully investigated across the wide range of soils used for grain production in Australia. A glasshouse pot experiment tested if liquid P fertilisers were more effective for growing spring wheat (Triticum aestivum L.) than granular P (monoammonium phosphate) in 28 soils from all over Australia with soil pH (H2O) ranging from 5.2 to 8.9. Application of liquid P resulted in greater shoot biomass, as measured after 4 weeks’ growth (mid to late tillering, Feeks growth stage 2–3), than granular P in 3 of the acidic to neutral soils and in 3 alkaline soils. Shoot dry matter responses of spring wheat to applied liquid or granular P were related to soil properties to determine if any of the properties predicted superior yield responses to liquid P. The calcium carbonate content of soil was the only soil property that significantly contributed to predicting when liquid P was more effective than granular P. Five soil P test procedures (Bray, Colwell, resin, isotopically exchangeable P, and diffusive gradients in thin films (DGT)) were assessed to determine their ability to measure soil test P on subsamples of soil collected before the experiment started. These soil test values were then related to the dry matter shoot yields to assess their ability to predict wheat yield responses to P applied as liquid or granular P. All 5 soil test procedures provided a reasonable prediction of dry matter responses to applied P as either liquid or granular P, with the resin P test having a slightly greater predictive capacity on the range of soils tested. The findings of this investigation suggest that liquid P fertilisers do have some potential applications in non-calcareous soils and confirm current recommendations for use of liquid P fertiliser to grow cereal crops in highly calcareous soils. Soil P testing procedures require local calibration for response to the P source that is going to be used to amend P deficiency.

2006 ◽  
Vol 46 (5) ◽  
pp. 675 ◽  
Author(s):  
R. F. Brennan ◽  
M. D. A. Bolland

The predominantly sandy soils of south-western Australia have become potassium (K) deficient for spring wheat (Triticum aestivum L.) production due to the removal of K from soil in grain and hay. The K requirements of canola (rape, Brassica napus L.) grown in rotation with wheat on these soils are not known and were determined in the study reported here. Seed (grain) yield increases (responses) of canola to applications of fertiliser K occurred at sites where Colwell soil test K values (top 10 cm of soil) were <60 mg/kg soil. Grain yield responses to applied K occurred when concentrations of K in dried shoots were <45 g/kg for young plants 7 and 10 weeks after sowing and <35 g/kg for 18 weeks after sowing. Application of fertiliser K had no significant effects on either oil or K concentrations in grain.


1990 ◽  
Vol 70 (1) ◽  
pp. 51-60 ◽  
Author(s):  
D. T. GEHL ◽  
L. D. BAILEY ◽  
C. A. GRANT ◽  
J. M. SADLER

A 3-yr study was conducted on three Orthic Black Chernozemic soils to determine the effects of incremental N fertilization on grain yield and dry matter accumulation and distribution of six spring wheat (Triticum aestivum L.) cultivars. Urea (46–0–0) was sidebanded at seeding in 40 kg N ha−1 increments from 0 to 240 kg ha−1 in the first year and from 0 to 200 kg ha−1 in the 2 subsequent years. Nitrogen fertilization increased the grain and straw yields of all cultivars in each experiment. The predominant factor affecting the N response and harvest index of each cultivar was available moisture. At two of the three sites, 91% of the interexperiment variability in mean maximum grain yield was explained by variation in root zone moisture at seeding. Mean maximum total dry matter varied by less than 12% among cultivars, but mean maximum grain yield varied by more than 30%. Three semidwarf cultivars, HY 320, Marshall and Solar, had consistently higher grain yield and grain yield response to N than Glenlea and Katepwa, two standard height cultivars, and Len, a semidwarf. The mean maximum grain yield of HY 320 was the highest of the cultivars on test and those of Katepwa and Len the lowest. Len produced the least straw and total dry matter. The level of N fertilization at maximum grain yield varied among cultivars, sites and years. Marshall and Solar required the highest and Len the lowest N rates to achieve maximum grain yield. The year-to-year variation in rates of N fertilization needed to produce maximum grain yield on a specific soil type revealed the limitations of N fertility recommendations based on "average" amounts and temporal distribution of available moisture.Key words: Wheat (spring), N response, standard height, semidwarf, grain yield


2002 ◽  
Vol 42 (2) ◽  
pp. 149 ◽  
Author(s):  
M. D. A. Bolland ◽  
W. J. Cox ◽  
B. J. Codling

Dairy and beef pastures in the high (>800 mm annual average) rainfall areas of south-western Australia, based on subterranean clover (Trifolium subterraneum) and annual ryegrass (Lolium rigidum), grow on acidic to neutral deep (>40 cm) sands, up to 40 cm sand over loam or clay, or where loam or clay occur at the surface. Potassium deficiency is common, particularly for the sandy soils, requiring regular applications of fertiliser potassium for profitable pasture production. A large study was undertaken to assess 6 soil-test procedures, and tissue testing of dried herbage, as predictors of when fertiliser potassium was required for these pastures. The 100 field experiments, each conducted for 1 year, measured dried-herbage production separately for clover and ryegrass in response to applied fertiliser potassium (potassium chloride). Significant (P<0.05) increases in yield to applied potassium (yield response) were obtained in 42 experiments for clover and 6 experiments for ryegrass, indicating that grass roots were more able to access potassium from the soil than clover roots. When percentage of the maximum (relative) yield was related to soil-test potassium values for the top 10 cm of soil, the best relationships were obtained for the exchangeable (1 mol/L NH4Cl) and Colwell (0.5 mol/L NaHCO3-extracted) soil-test procedures for potassium. Both procedures accounted for about 42% of the variation for clover, 15% for ryegrass, and 32% for clover + grass. The Colwell procedure for the top 10 cm of soil is now the standard soil-test method for potassium used in Western Australia. No increases in clover yields to applied potassium were obtained for Colwell potassium at >100 mg/kg soil. There was always a clover-yield increase to applied potassium for Colwell potassium at <30 mg/kg soil. Corresponding potassium concentrations for ryegrass were >50 and <30 mg/kg soil. At potassium concentrations 30–100 mg/kg soil for clover and 30–50 mg/kg soil for ryegrass, the Colwell procedure did not reliably predict yield response, because from nil to large yield responses to applied potassium occurred. The Colwell procedure appears to extract the most labile potassium in the soil, including soluble potassium in soil solution and potassium balancing negative charge sites on soil constituents. In some soils, Colwell potassium was low indicating deficiency, yet plant roots may have accessed potassum deeper in the soil profile. Where the Colwell procedure does not reliably predict soil potassium status, tissue testing may help. The relationship between relative yield and tissue-test potassium varied markedly for different harvests in each year of the experiments, and for different experiments. For clover, the concentration of potassium in dried herbage that was related to 90% of the maximum, potassium non-limiting yield (critical potassium) was at the concentration of about 15 g/kg dried herbage for plants up to 8 weeks old, and at <10 g/kg dried herbage for plants older than 10–12 weeks. For ryegrass, there were insufficient data to provide reliable estimates of critical potassium.


Author(s):  
Bhupesh Kumar Mishra Santosh Pandey ◽  
Arvind Kumar Ramesh Kumar

An experiment has been conducted to assess the real time utility and abundance of organic minerals in cultivation of common wheat, Triticum aestivum L. in Bundelkhand region of Uttar Pradesh with the aim of finding the effect of available soil organic minerals on various biochemicals or chemical characters including yield attributes. For the experiment, the cultivar namely RAJ-4037 which is best for dry land area and crop matures in 120 days. This variety is suitable for bakery and beverage industry, has been taken. The pre availability of manures were measured and the application of various fertilizers have been done as per the recommended dose for the cultivation. The data of various biochemical characters like Dry matter accumulation, Protein content, NPK in grain, NPK in straw, yield and biological yields have been recorded as per standard methods. The results revealed that organic minerals had a significant impact to influence the various biochemical traits such as dry matter accumulation maximum in FYM, Protein content (11.18), NPK (0.60; 0.35 and 0.36) were recorded maximum in vermin compost treatment.


2006 ◽  
Vol 46 (5) ◽  
pp. 645 ◽  
Author(s):  
M. D. A. Bolland ◽  
R. F. Brennan ◽  
P. F White

The phosphorus (P) requirements of spring wheat (Triticum aestivum L.) are well known for all soils in south-western Australia; but the P requirements of field pea (Pisum sativum L.) and canola (Brassica napus L.), which are grown in rotation with wheat on marginally acidic to alkaline soils in the region, are not known. In a glasshouse study, the P requirements of field pea and wheat were compared for 16 soils collected throughout the agricultural region. Ten of the 16 soils were also used to compare the P requirements of canola and wheat. The P was applied as powdered single superphosphate, and yield of dried shoots of 42-day-old plants was measured. The amount of P required to produce 90% of the maximum yield of dried shoots (PR90 values) was used to compare the P requirements of the species. To produce 90% of the maximum yield, field pea required less P than wheat in 5 soils, similar P in 2 soils, and more P in 9 soils. Canola required less P than wheat in all 10 soils. We conclude the P requirements of field pea or canola relative to wheat depend on a complex interaction between plant and soil, particularly for field pea relative to wheat. Per unit of applied P, the P concentration in dried shoots decreased in the order canola > wheat > field pea, indicating the order in which plant roots of the 3 species were able to access P from soil.


2011 ◽  
Vol 49 (No. 1) ◽  
pp. 1-7 ◽  
Author(s):  
J. Lachman ◽  
J. Dudjak ◽  
M. Orsák ◽  
V. Pivec

The influence of accelerated ageing test (AAT), i.e. of higher temperature and humidity, on the content and composition of phenolic compounds in the grains of five cultivars of wheat (Triticum aestivum L.) was studied in the years 1998 and 1999. Total polyphenols were determined spectrophotometrically by Folin-Ciocalteau&rsquo;s phenolic reagent and free phenolic acids by an HPLC method in control samples and after deterioration treatment (AAT) in the Ebi, Estica, Nela, Samanta and &Scaron;&aacute;rka cultivars. Statistical significance of deterioration treatment, cultivar, cultivation site, and harvest year was proved. Content of total polyphenols increased during deterioration and levels of the individual free phenolic acid changed depending on their structures. Mean contents of total polyphenols varied from 600 to 960 mg/kg of dry matter. The increase caused by the AAT ranged between 0&ndash;20%, the greatest mean increase was observed in the cultivar Nela (by 19%). Sinapic acid (as high as 540 mg/kg of dry matter), 3-hydroxy-benzoic acid and 7-hydroxycoumarin were determined as the major phenolic acids and coumarins. A decrease of free phenolic acids containing methoxy groups in their molecules (sinapic and vanillic acids) and an increase of phenolic acids with free hydroxy groups (caffeic and gallic acids) was observed after deterioration treatment. Statistically significant (P &le; 0.05) effect of AAT on the content of free phenolic acids was observed.


2007 ◽  
Vol 58 (5) ◽  
pp. 452 ◽  
Author(s):  
S. G. L. Kleemann ◽  
G. S. Gill

Field and glasshouse experiments were undertaken at 2 locations in South Australia to evaluate wheat (Triticum aestivum L.) tolerance to metribuzin. Sloop SA barley (Hordeum vulgare L.) was used as a standard in the evaluation. Linear and logistic regression models were used to describe the response of wheat genotypes to metribuzin. Parameter estimates of B (slope) and ED50 (dose required for 50% inhibition) estimated by the models were used to compare the responses of the genotypes with that of the known sensitive cv. Spear. In the field, wheat cvv. Blade, Kite, EGA Eagle Rock, and Sloop SA barley showed tolerance to metribuzin, exhibiting little change in seedling density and anthesis dry matter (DM) when treated with metribuzin (187.5 and 375 g/ha). In contrast, wheat cv. Spear, which has 50% common parentage with Blade, showed a strong negative response to metribuzin for both seedling density (B = –0.308) and anthesis DM (B = –0.482), indicating sensitivity to the herbicide. Sonora 64 and Tezanos Pinto Precoz, parental lines of Blade, were also sensitive to metribuzin (>187.5 g/ha), showing similar negative responses to that of Spear for anthesis dry matter (B = –0.307 and –0.387). However, Kite, which is another parent of Blade, showed excellent tolerance to this herbicide, exhibiting only a small response (B = –0.076), which was statistically (P < 0.05) different from that of Spear. In the second field study, cvv. Blade, EGA Eagle Rock, and Sloop SA barley were again far more tolerant to metribuzin than the sensitive cv. Spear, requiring almost double the dose of metribuzin to induce 50% inhibition (ED50). Glasshouse studies, where metribuzin was highly active in a light sandy potting soil at what would be considered low rates in the field (50 and 100 g/ha), confirmed the sensitivity differences among wheat genotypes observed in the field. Wheat genotypes Blade, Kite, EGA Eagle Rock, and daughter line RAC 0824 were consistently tolerant to metribuzin. Sensitivity to metribuzin (50 g/ha) was observed in Spear, and most parental lines of Blade with the exception of Kite. Interestingly, Kite showed equivalent tolerance to its progeny, Blade and EGA Eagle Rock, exhibiting similar ED50 and B (slope) values. It is noteworthy that EGA Eagle Rock has recently been specifically bred for tolerance to metribuzin using Blade as a parent. Considering Kite was the only parent to show tolerance to metribuzin in these field and glasshouse studies, it would appear to be the major contributor to metribuzin tolerance in cv. Blade. At present, Kite is not favoured by wheat breeders due to the presence of a rust-resistant gene (SR26) linked to yield penalty. Further research is required to determine alleles responsible for metribuzin tolerance in wheat and to identify alternative sources of metribuzin tolerance.


Sign in / Sign up

Export Citation Format

Share Document