Comparing responses to phosphorus of field pea (Pisum sativum), canola (rape, Brassica napus) and spring wheat (Triticum aestivum)

2006 ◽  
Vol 46 (5) ◽  
pp. 645 ◽  
Author(s):  
M. D. A. Bolland ◽  
R. F. Brennan ◽  
P. F White

The phosphorus (P) requirements of spring wheat (Triticum aestivum L.) are well known for all soils in south-western Australia; but the P requirements of field pea (Pisum sativum L.) and canola (Brassica napus L.), which are grown in rotation with wheat on marginally acidic to alkaline soils in the region, are not known. In a glasshouse study, the P requirements of field pea and wheat were compared for 16 soils collected throughout the agricultural region. Ten of the 16 soils were also used to compare the P requirements of canola and wheat. The P was applied as powdered single superphosphate, and yield of dried shoots of 42-day-old plants was measured. The amount of P required to produce 90% of the maximum yield of dried shoots (PR90 values) was used to compare the P requirements of the species. To produce 90% of the maximum yield, field pea required less P than wheat in 5 soils, similar P in 2 soils, and more P in 9 soils. Canola required less P than wheat in all 10 soils. We conclude the P requirements of field pea or canola relative to wheat depend on a complex interaction between plant and soil, particularly for field pea relative to wheat. Per unit of applied P, the P concentration in dried shoots decreased in the order canola > wheat > field pea, indicating the order in which plant roots of the 3 species were able to access P from soil.

2013 ◽  
Vol 182 ◽  
pp. 335-342 ◽  
Author(s):  
Stefan. B. Bengtsson ◽  
Jan Eriksson ◽  
Annemieke I. Gärdenäs ◽  
Mykhailo Vinichuk ◽  
Klas Rosén

2004 ◽  
Vol 44 (3) ◽  
pp. 309 ◽  
Author(s):  
R. F. Brennan ◽  
M. D. A. Bolland

We compared the potassium (K) response of canola (Brassica napus L. cv. Karoo), spring wheat (Triticum aestivum L. cv. Camm), narrow-leaf lupin (8 cultivars of Lupinus angustifolius L.), and yellow lupin (2 cultivars of L. luteus L.) in a glasshouse experiment. The following measures were used: yield without added K; K required for 75% of the maximum yield; K required to achieve a K concentration in shoots of 20 g/kg; K required to achieve a K content of 50 mg K/pot in dried shoots (K concentration multiplied by yield); and, for the L. angustifolius cultivars, the K efficiency ratio (yield for the nil-K treatment divided by yield for the largest amount of K applied).Both L. angustifolius and L. luteus used soil K and applied K more effectively than canola and wheat to produce shoots (measured from dried shoots of 42-day old seedlings). For all amounts of K applied, including the nil treatment, the K concentrations were higher in canola and wheat shoots than in shoots of the 2 lupin species. Consequently, the 2 lupin species were less effective than canola and wheat at taking up soil and applied K, but were more effective at using the K taken up to produce shoots. The most recent cultivar of L. angustifolius, cv. Kalya, was less effective than the older Merrit cultivar at using soil and applied K to produce shoots, therefore future cultivars need to be screened for their ability to use soil and applied K. The K efficiency ratio for L. angustifolius indicated cultivars Kalya and 2141 were inefficient and the following cultivars had similar medium efficiency values: Myallie, Tanjil, Tallerack, Quilinock, Belara and Merrit. As measured in 42 day old seedlings, the diagnostic critical concentration of K in shoots required for 90% maximum yield of dried shoots was about (g K/kg) 40 for wheat, 37�for canola, 16 for L. angustifolius and 14 for L. luteus.


2004 ◽  
Vol 44 (9) ◽  
pp. 913 ◽  
Author(s):  
R. F. Brennan ◽  
M. D. A. Bolland

Copper (Cu) is a common deficiency of spring wheat (Triticum aestivum L.), the major crop grown in south-western Australia. The Cu requirements of wheat are well known for soils in the region, but are not known for field pea (Pisum sativum L.) grown in rotation with wheat on alkaline soils in the region. The Cu requirements of field pea and spring wheat were compared in a glasshouse experiment, using 2 alkaline soils from south-western Australia. The Cu was either incubated in moist soil at 22°C for 100 days before sowing (incubated Cu) or applied just before sowing (current Cu). Comparative Cu requirements were determined from yields of 43-day-old dried shoots for: (i) Cu already present in the soil (indigenous Cu); (ii) the amount of added Cu required to produce the same percentage of the maximum (relative) yield of dried shoots; and (iii) the Cu content of dried shoots (Cu concentration multiplied by yield of dried shoots). The critical concentrations of Cu in youngest mature growth and in dried shoots were also determined. As determined from yield of shoots, both species used indigenous Cu about equally effectively. Compared with spring wheat, field pea was about 12% less effective at using current and incubated Cu to produce dried shoots. It was about 15% less effective at using current and incubated Cu to increase Cu content in dried shoots. Relative to current Cu, the effectiveness of incubated Cu declined by about 60% for both wheat and field pea in both soils. The critical Cu concentration in the youngest tissue, associated with 90% of the relative yield, was 1.4 mg Cu/kg for spring wheat and 2.0 mg Cu/kg for field pea. The critical value for the rest of the dried shoots was about 3.0 mg Cu/kg for both species.


1978 ◽  
Vol 58 (1) ◽  
pp. 241-248 ◽  
Author(s):  
J. WADDINGTON

Under greenhouse conditions, incorporating ground straw in the soil at rates between 2,240 and 8,970 kg/ha reduced the emergence of alfalfa (Medicago media Pers. cv. Beaver) significantly (P < 0.05) and bromegrass (Bromus inermis Leyss cv. Magna) slightly, but had no effect on barley (Hordeum vulgare L. cv. Conquest). Rape (Brassica napus L. cv. Target and B. campestris L. cv. Echo) straws were more damaging than wheat (Triticum aestivum L. cv. Manitou) straw. Symptoms of severe nitrogen deficiency appeared early in the growth of barley where straw had been added to the soil. The effect on tillering varied. In one experiment tillers were smaller, in one tillers were larger; but in both, total leaf area produced was much less where 8,970 kg/ha of straw had been added to the soil. Bromegrass showed the same effects but to a lesser degree, probably because of slower growth requiring a smaller supply of nitrogen. Alfalfa growth was apparently unaffected. There was no evidence that the straw of either rapeseed species was more deleterious than wheat straw to crop growth after emergence. It is concluded that straw incorporated in soil affected barley and bromegrass growth by reducing the availability of nitrogen.


2020 ◽  
Vol 71 (12) ◽  
pp. 959
Author(s):  
Malcolm R. McCaskill ◽  
Penny Riffkin ◽  
Amanda Pearce ◽  
Brendan Christy ◽  
Rob Norton ◽  
...  

Nutrient deficiencies are considered a reason for commercial yields of wheat (Triticum aestivum L.) and canola (Brassica napus L.) in the high-rainfall zone (HRZ) of southern Australia being well below predicted potential yields. With the aim of developing soil-test interpretation guidelines suitable for HRZ conditions, nutrient-response experiments, 15 with wheat and 12 with canola, were conducted between 2015 and 2018. These experiments quantified responses to nitrogen (N), phosphorus (P), potassium (K), sulfur (S), copper (Cu) and zinc (Zn) in pre-sowing soil tests. The highest yielding treatment of the wheat experiments averaged 7.1 t/ha (range 2.6–10.8 t/ha), and of the canola experiments 4.2 t/ha (range 0.7–6.2 t/ha). The most frequent responses were to N and P, followed by S and K. There were no significant positive responses to Cu or Zn. Across the experiments, the 95% critical value for Colwell P in wheat was 52 mg/kg, with a 95% confidence range of 39–68 mg/kg. For canola, the critical value was 59 mg/kg, with a range of 38–139 mg/kg. These values are higher than from lower rainfall regions of Australia. Critical values for K and S were also higher than from drier regions of Australia. The Sprengel–Lieberg Law of the Minimum overestimated yield where there were multiple nutrient limitations, whereas an equivalent Law of the Product underestimated yield under these conditions. These higher critical values based on evidence from the HRZ are expected to assist in closing the yield gap for wheat and canola in the region.


2004 ◽  
Vol 44 (9) ◽  
pp. 921 ◽  
Author(s):  
R. F. Brennan ◽  
M. D. A. Bolland

The copper (Cu) requirements of spring wheat (Triticum aestivum L.), the major crop for alkaline soils in south-western Australia, is well known. The Cu requirements of canola (Brassica napus L.), albus lupin (Lupinus albus L.) and durum wheat (Triticum durum L.), alternative crops for these soils, are not known. A glasshouse experiment, using 2 alkaline soils from south-western Australia, compared the yield and Cu content response to applications of Cu to canola, albus lupin, durum wheat and spring wheat. The Cu was applied either just before 45-days incubation in moist soil at 20°C (incubated Cu), or just before sowing after the incubation treatment (current Cu). Comparative Cu requirements were determined from yields of 45-day-old dried shoots for: (i) Cu already present in the soil (indigenous soil Cu); (ii) the amount of applied Cu required to produce the same percentage of the maximum (relative) yield of dried shoots; and (iii) the Cu content of dried shoots (Cu concentration multiplied by yield of dried shoots). The concentration of Cu in youngest tissue and in dried rest of shoots was used to determine critical Cu concentrations in tissue. Albus lupin used indigenous Cu so effectively it only showed a 10% yield increase to applied Cu. Canola used indigenous Cu more effectively than durum wheat, which was followed by spring wheat. Relative to spring wheat, durum wheat was about 15% less effective at using incubated and current Cu to produce dried shoots and canola was about 47% more effective. Therefore, to produce the same percentage of the maximum (relative) yield as spring wheat, durum wheat required about 15% more incubated and current Cu and canola required about 50% less Cu. As determined using Cu content in shoots, canola and durum wheat were about 45% more effective than spring wheat at increasing Cu content in shoots and albus lupin was about 80% more effective. Evidently, all 3 species took up more copper than spring wheat. Durum wheat did not use this Cu to produce more shoot yield than spring wheat, whereas canola did. The critical Cu concentration in the youngest tissue (mg Cu/kg), associated with 90% of the relative yield, was: 1.5 for spring wheat; 1.7 for durum wheat; 1.0 for albus lupin; and 2.2 for canola. Corresponding values (mg Cu/kg) for rest of dried shoots were: 2.5 for spring wheat; 3.2 for durum wheat; 1.3 for albus lupin; and 2.7 for canola.


Author(s):  
Elnaz Ebrahimi ◽  
Hans-Peter Kaul ◽  
Reinhard W. Neugschwandtner ◽  
Adel Dabbagh mohammadinasab

Sign in / Sign up

Export Citation Format

Share Document