Long-term natural succession improves nitrogen storage capacity of soil on the Loess Plateau, China

Soil Research ◽  
2014 ◽  
Vol 52 (3) ◽  
pp. 262 ◽  
Author(s):  
Lei Deng ◽  
Kai-bo Wang ◽  
Zhou-ping Shangguan

Land-use change resulting from natural succession enhances the nitrogen (N) accumulation capacity of terrestrial ecosystems. To explore those factors that foster changes in soil N storage under evolving conditions of vegetation succession, a study on N storage at differing stages along a 150-year chronosequence was conducted in the Ziwuling Forest Region in the central part of the Loess Plateau, China. A principal finding was the rapid increase in N storage in the 0–60 cm soil layer, which achieves a stable value after the shrub community stage (~50–60 years), leading to the overall long-term (~150 years) accumulation of soil stored N in the post-abandonment secondary forest. Soil N accumulated mainly in the pioneer stage and showed a significant increase before the shrub community stage (P < 0.05). The N storage in the 0–60 cm soil layer changed from 5.8 to 8.4 Mg ha–1 during the transition from abandoned farmland (~3–5 years) to climax community (Quercus liaotungensis Koidz forest) (~150 years). The N storage values were higher in the upper (<20 cm) than the deeper soil layers (>20 cm). In the topsoil (0–20 cm), N storage values showed a markedly positive correlation with soil organic carbon (SOC), total soil N and fine roots. In the deeper soil layers (20–40 and 40–60 cm) there was a correlation only with TN. Soil bulk density, soil water content and soil pH were not the determining factors behind N storage values in the topsoil (0–20 cm), although they did show negative, positive and negative correlations, respectively. In addition, they showed no consistent correlations in the lower soil layer (<20 cm). The results suggest that changes to N storage values were the result of the accumulation of SOC, total N and primary productivity during the process of forest succession, and this capacity is positively related to post-abandonment forest succession on the Loess Plateau, China.

Author(s):  
Weiwen Zhao ◽  
Youzhi Han ◽  
Wenjun Liang ◽  
Xi Wei

There are few precipitation events in the Loess Platea area, which may significantly influence water uptake strategies for plant communities, while water source for trees, growing in the Loess Plateau mountain area, are poorly comprehend. We investigated the impacts of precipitation (before and after) on water uptake strategies for typical broadleaf and coniferous trees using hydrogen and oxygen stable isotope techniques in the Loess Plateau mountain area of northern China. Our results indicated that water sources of the two plant species varied before and after rainfall. Robinia pseudoacacia largely absorbed water from 30-40cm (57.8%) soil layers before precipitation and switched its main water source to 20-30cm (58.5%) soil layer after precipitation. Contrary to R.pseudoacacia, Pinus tabuliformis mainly absorbed water from 20-30cm (24.9%) and 10-20cm (21.6%) soil layers before precipitation and changed its dominant water sources to 0-10cm (39.8%) and 10-20cm (44%) soil layer after precipitation. Moreover, the herbaceous of broadleaf plant has the higher complex of the community. On the whole, R.pseudoacacia and P.tabuliformis showed the diverse characteristics of water utilization, which suggests that these two species are suitable for a mixed forest vegetation and our findings provide valuable information for planning long-term ecological afforestation management around the Loess Plateau mountain area of northern China.


CATENA ◽  
2021 ◽  
Vol 202 ◽  
pp. 105293
Author(s):  
Yang Wu ◽  
WenJing Chen ◽  
Wulan Entemake ◽  
Jie Wang ◽  
HongFei Liu ◽  
...  

2014 ◽  
Vol 62 ◽  
pp. 47-57 ◽  
Author(s):  
Wei Liu ◽  
Jia Mi ◽  
Zhihong Song ◽  
Juan Yan ◽  
Jianqiang Li ◽  
...  

2016 ◽  
Author(s):  
Haixin Zhang ◽  
Quanchao Zeng ◽  
Shaoshan An ◽  
Yanghong Dong ◽  
Frédéric Darboux

Abstract. Vegetation restoration was effective way of protecting soil erosion and water conservation on the Loess Plateau. Carbon fractions and enzyme activities were sensitive parameters for assessment of soil remediation through revegetation. Forest, forest steppe and grassland soils were collected at 0–5 cm and 5–20 cm soil layers in Yanhe watershed, Shaanxi Province. Urease, sucrase, alkaline phosphatase, soil organic carbon (SOC), microbial biomass carbon (MBC), easily oxidized organic carbon (EOC) and dissolved organic carbon (DOC) were measured. The results showed that carbon fraction contents and enzyme activities in the same soil layer followed the order that forest was higher than others. Carbon fraction contents and enzyme activities appeared that the 0–5 cm was higher than 5–20 cm soil layer. In addition, correlation analysis showed that urease activity was related to SOC, MBC, EOC and DOC at 0–5 cm layer; it was correlated with SOC, MBC and EOC at 5–20 cm layer. Sucrase activity had significant positive relationship with SOC, MBC and EOC. Alkaline phosphatase activity was related to EOC and DOC at 0–5 cm layer; it was correlated with MBC and EOC at 5–20 cm layer. The CCA reflected the relationship between sucrase activity and SOC. The contributions from the various forms of carbon fractions and enzyme activities as evaluated by the canonical coefficient of CV were on the order of SOC > DOC > MBC > EOC; sucrase > urease > alkaline phosphatase. Vegetation type was an important factor influencing the variation of soil enzyme activities and carbon fractions on the Loess Plateau.


2019 ◽  
Vol 12 (6) ◽  
pp. 1059-1072
Author(s):  
Lin Wei ◽  
Pengwei Yao ◽  
Guanghua Jing ◽  
Xiefeng Ye ◽  
Jimin Cheng

Abstract Aims Clipping or mowing for hay, as a prevalent land-use practice, is considered to be an important component of global change. Root production and turnover in response to clipping have great implications for the plant survival strategy and grassland ecosystem carbon processes. However, our knowledge about the clipping effect on root dynamics is mainly based on root living biomass, and limited by the lack of spatial and temporal observations. The study aim was to investigate the effect of clipping on seasonal variations in root length production and mortality and their distribution patterns in different soil layers in semiarid grassland on the Loess Plateau. Methods Clipping was performed once a year in June to mimic the local spring livestock grazing beginning from 2014. The minirhizotron technique was used to monitor the root production, mortality and turnover rate at various soil depths (0–10, 10–20, 20–30 and 30–50 cm) in 2014 (from 30 May to 29 October) and 2015 (from 22 April to 25 October). Soil temperature and moisture in different soil layers were also measured during the study period. Important Findings Our results showed that: (i) Clipping significantly decreased the cumulative root production (P < 0.05) and increased the cumulative root mortality and turnover rates of the 0–50 cm soil profile for both years. (ii) Clipping induced an immediate and sharp decrease in root length production and an increase in root length mortality in all soil layers. However, with plant regrowth, root production increased and root mortality decreased gradually, with the root production at a depth of 30–50 cm even exceeding the control in September–October 2014 and April–May 2015. (iii) Clipping mainly reduced root length production and increased root length mortality in the upper 0–20 cm soil profile with rapid root turnover. However, roots at deeper soil layers were either little influenced by clipping or exhibited an opposite trend with slower turnover rate compared with the upper soil profile, leading to the downward transport of root production and living root biomass. These findings indicate that roots in deeper soil layers tend to favour higher root biomass and longer fine root life spans to maximize the water absorption efficiency under environmental stress, and also suggest that short-term clipping would reduce the amount of carbon through fine root litter into the soil, especially in the shallow soil profile.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10349
Author(s):  
Zhenguo Zhang ◽  
Mingming Wang ◽  
Jikai Liu ◽  
Xinwei Li

Identification of typical vegetation succession types and their important influencing factors is an important prerequisite to implement differential vegetation and soil management after land abandonment on the Loess Plateau, China. However, there is no reported study specifically on the identification of vegetation types and their important factors as well as the thresholds of the important factors for classification of the vegetation types, based on the medium- to long-term succession of natural vegetation after cropland abandonment. We collected vegetation and soil data on the natural vegetation with the longest 60-year-old forest communities that developed after cropland abandonment and analyzed the data using two-way indicator species analysis, detrended correspondence analysis, direct canonical correspondence analysis and classification tree model. The vegetation communities were classified into five distinct vegetation types, including Artemisia scoparia, Lespedeza davurica and Stipa bungeana, Artemisia giraldii pamp, Sophora viciifolia, Quercus liaotungensis and Biota orientalis. The years after cropland abandonment and soil C/N were further identified as important factors determining the types of vegetation. Likewise, it was observed that most of the investigated soil nutrient variables and soil texture-related variables improved with the vegetation succession while soil water in the surface layers showed a decreasing trend. These findings may provide an ecological basis for site-specific management of vegetation types after cropland abandonment in the medium-long term on the Loess Plateau. Our results encourage further exploration of vegetation succession and their important factors based on longer periods of vegetation succession after cropland abandonment under more soil and climatic conditions on the mountainous areas as the Loess Plateau.


Sign in / Sign up

Export Citation Format

Share Document