Topsoil structure in no-tilled soils in the Rolling Pampa, Argentina

Soil Research ◽  
2014 ◽  
Vol 52 (6) ◽  
pp. 533 ◽  
Author(s):  
C. R. Alvarez ◽  
M. A. Taboada ◽  
S. Perelman ◽  
H. J. M. Morrás

Some topsoil physical properties evolve unfavourably under continuous, no-till farming. On the Pampa, loam soils under no-till sometimes have lower infiltration rates than those conventionally tilled; this is due to the occurrence of platy and massive structures. In this study, we aimed to identify the soil management practices that promote platy structure formation, and explain the soil physical behaviour linked to the thickness of platy structures in relation to infiltration rate, bulk density and shear strength. Six fields with different numbers of years under agriculture and diverse previous crops (maize or wheat–soybean double crop) were sampled, distinguishing within each field headlands (areas with higher traffic) and centre (lower traffic). Twenty samples were taken at random along a 200-m transect to characterise soil structure (platy, granular or massive) and the thickness of the platy structure. Principal component analysis revealed linkages between previous crop and location in each field and type of structure. ANOVA showed a significant (P < 0.05) interaction of previous crop × location. The frequency and thickness of the platy structures were lower, and those of granular structures higher, under wheat–soybean double cropping and in the centre of the field. Greater thickness of the platy structure determined lower water infiltration rate (r = –0.337; P < 0.01) and greater soil shear strength (r = 0.297, P < 0.01). Micromorphological analysis indicated the dominance of massive and platy structure in the headlands and bioturbation in the centre of the fields with wheat–soybean double cropping. These results suggest bioturbation, crop-root binding and low machinery traffic as the main factors minimising soil evolution towards unfavourable structural types under no-till farming in the area.

Author(s):  
Lucas dos Santos Batista ◽  
Raimundo Rodrigues Gomes Filho ◽  
Clayton Moura de Carvalho ◽  
Alceu Pedrotti ◽  
Igor Leonardo Nascimento Santos ◽  
...  

Watersheds are units of planning and environmental management having a great importance in the management of water resources and their use. To this end, knowledge about the soil's physical and water attributes is of paramount importance in the context of water dynamics in aquifer recharge areas. Water infiltration rate into the soil is considered an important variable in the hydrological cycle, as the increase in this process can lead to a reduction in erosion and consequently greater groundwater recharge. Thus, the present work aimed to evaluate the soil water infiltration rate in the phytophysiognomy of the Poxim River basin in the State of Sergipe, in the agriculture, eucalyptus and forest areas, and to observe the effect of the infiltration water rate in areas of no-till, minimum and conventional cultivation. The soil water infiltration rate was obtained through the use of double cylinder infiltrometer and estimated through the mathematical models of Kostiakov, Kostiakov-Lewis, Horton and Philip. When making comparisons between the models for estimating of soil water infiltration rates, the Horton model showed a better fit compared to the other models used, and the type of soil cover that obtained the highest infiltration rate was the forest. No-till areas provided higher water infiltration rates in the soil, contributing to greater groundwater recharge.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1192
Author(s):  
Lulu Liu ◽  
Han Yu

An unconditionally mass conservative hydrologic model proposed by Talbot and Ogden provides an effective and fast technique for estimating region-scale water infiltration. It discretizes soil moisture content into a proper but uncertain number of hydraulically interacting bins such that each bin represents a collection of pore sizes. To simulate rainfall-infiltration, a two-step alternating process runs until completion; and these two steps are surface water infiltration into bins and redistribution of inter-bin flow. Therefore, a nonlinear dynamical system in time is generated based on different bin front depths. In this study, using rigorous mathematical analysis first reveals that more bins can produce larger infiltration fluxes, and the overall flux variation is nonlinear with respect to the number of bins. It significantly implies that a greater variety of pore sizes produces a larger infiltration rate. An asymptotic analysis shows a finite change in infiltration rates for an infinite number of bins, which maximizes the heterogeneity of pore sizes. A corollary proves that the difference in the predicted infiltration rates using this model can be quantitatively bounded under a specific depth ratio of the deepest to the shallowest bin fronts. The theoretical results are demonstrated using numerical experiments in coarse and fine textured soils. Further studies will extend the analysis to the general selection of a suitable number of bins.


2020 ◽  
Author(s):  
Lena Wöhl ◽  
Stefan Schrader

&lt;p&gt;Maize (&lt;em&gt;Zea mays&lt;/em&gt;) is the most commonly cultivated energy crop throughout Europe. However, its cultivation has severe negative effects such as loss of biodiversity and its delivery of ecosystem services, soil compaction and enhanced greenhouse gas emissions. These negative effects tend to be even more pronounced in wet soils such as pseudogleys. As an alternative to annual maize, the perennial cup plant (&lt;em&gt;Silphium perfoliatum&lt;/em&gt;) is known to produce a similar yield, especially under waterlogging conditions, while management impacts of its cultivation are assumed to be less harmful to soil biota. Therefore, the aim of the present study was to quantify the provision of ecosystem services (here: control of the soil water balance) delivered by earthworm communities in wet soils under cultivation of cup plant compared with maize and to assess the ecological impact of both energy crops.&lt;/p&gt;&lt;p&gt;Fieldwork was conducted cup plant and maize fields (n = 4) in South Western Germany in spring and autumn 2019. The overall soil type was pseudo gleyic luvisol. All fields are managed for commercial purposes by farmers in the area. Sampling included earthworm extraction with allyl isothiocyanate (AITC) while the infiltration rate was measured simultaneously. Afterwards, hand sorting completed the earthworm sampling. Earthworm species, their abundance and biomass (live weight) were determined.&lt;/p&gt;&lt;p&gt;On average, earthworm abundance and biomass were higher in cup plant fields than in maize fields. In addition, variations in earthworm communities were found. While endogeic earthworms, especially of the genus &lt;em&gt;Aporrectodea&lt;/em&gt;, were present in all fields, anecic earthworms were more abundant in cup plant fields. Higher infiltration rates were measured in maize fields. Hints to a correlation between the infiltration rates and the functional earthworm groups were found.&lt;/p&gt;&lt;p&gt;Our results suggest that cup plant fields host overall more diverse earthworm communities. These communities are able to produce a wider range of ecosystem services, even though the link between the infiltration and the crops studied in this stud is not yet validated.&lt;/p&gt;


2011 ◽  
Vol 49 (No. 7) ◽  
pp. 298-306 ◽  
Author(s):  
S. Matula

Water infiltration into the soil profile and runoff losses in arable lands are related to the condition of the top layer. The tillage treatment (included no-till) of the top layer plays a&nbsp;key role in changes of the hydro-physical properties, mainly saturated hydraulic conductivity (K) of the treated layer. This paper is focused on the influence of repeated tillage treatments in the same locality on K&nbsp;in a&nbsp;relatively homogeneous soil profile. The field experimental work was conducted in 1997 and repeated in 2000 after three years of repeated treatments in an experimental field of the Research Institute of Plant Production, Prague on Hapludalfs (US Classification)/Orthic luvisol (FAO). The whole experimental site was divided into four tillage treatment areas (TTA) that were maintained using different tillage treatments. A&nbsp;pressure ring infiltrometer (Matula and Koz&aacute;kov&aacute; 1997), mounted on the top of a&nbsp;single iron infiltration ring was used to run infiltration tests. The infiltration during the steady state flow (for a&nbsp;long time) was measured, evaluated and K&nbsp;values were calculated. Matula (2002) summarised the theoretical background for the pressure ring infiltrometer and described the final equations for evaluation of the infiltration test results. The conventional ploughing did not give any significant changes in K&nbsp;values after three years. Reduced till treatment and no-till treatment show a&nbsp;significant decrease in the infiltration rate v(t) after three years. The K&nbsp;value decreased approximately three times for reduced till and six times for no-till treatment. The decrease on this type of soil can cause several negative results from the aspect of surface soil hydrology and agriculture (surface runoff increase, water storage decrease, yield decrease, increase in soil compaction of surface layer, soil erosion increase).


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 240 ◽  
Author(s):  
Giuseppe Bombino ◽  
Pietro Denisi ◽  
Josè Gómez ◽  
Demetrio Zema

When olive groves are cultivated on clayey soils with steep gradients, as in many Mediterranean areas, reducing the runoff and soil erosion rates by adopting proper soil management practices is imperative. A soil cover by pruning residues may represent an alternative to the commonly adopted mechanical tillage. This study evaluates the water infiltration rates and surface runoff volumes in a steep and clayey olive grove of Southern Italy. These hydrological variables are measured at the plot scale under four soil management practices (mechanical tillage, total artificial protection of soil and soil cover with two different rates of vegetal residues). The measurements have been carried out using a rainfall simulator under dry (undisturbed) and wet (that is, on soils disturbed by intense rainfall) conditions. The mechanical tillage leads to lower water infiltration rates and higher runoff production. The retention of a soil cover by vegetal residues (in the range 3.5–17.5 tons/ha of dry matter) reduces the runoff rate on average by 30%, mainly because of the increased soil infiltration rates (over 100%, compared to mechanical tillage). After soil disturbance due to antecedent rainfall, the runoff generation capacity of a soil disturbed by a heavy precipitation significantly increased compared to undisturbed soils because of the decrease in soil infiltration rates. Overall, the retention of vegetal residues over the soil may be advisable to reduce surface runoff generation rates, particularly for saturated soils.


Agro-Science ◽  
2020 ◽  
Vol 19 (2) ◽  
pp. 23-30
Author(s):  
P.I. Ogban ◽  
A.X. Okon

Soil infiltrability is an important hydrological process that enhances soil water storage and the minimization of runoff. A study was conducted to evaluate the effect of slope aspect (north, NfS and south, SfS) and positions [(crest (CR), upper (US), middle (MS) and lower (LS)] on soil infiltrability,  that is, initial infiltration rate (io), steady-state infiltration rate (ic) and cumulative infiltration (I), and sorptivity (S) and transmissivity (A) on the University of Uyo Teaching and Research Farm (T&SF) located on an Ultisol in Akwa Ibom State, southern Nigeria. Results show that the initial  infiltration rate (io) was 43.20 cm h−1 on SfS and significantly (p < 0.05) higher than 36.60 cm h−1 on NfS. The final infiltration rate (ic) was not significantly different between NfS (9.60 cm h−1) and SfS (7.20 cm h−1). The Cumulative depth of water (I) infiltrated was similar between NfS (28.18 cm) and SfS (21.46 cm). Soil water sorptivity (S) was moderately high on the two slopes but significantly (p < 0.05) lower in NfS (0.49 cm min−1/2)  than in SfS (0.70 cm min−1/2) soil. Soil water transmissivity (A) was similar in NfS (0.19 cm h−1) and SfS (0.16 cm h−1) soil. The results indicate that the aspects were similar in io, ic, I, S and A. However, since soil texture is similar among the aspects, similar soil management practices, example tillage  and mulching, could be adopted to enhance water infiltration to improve ic for increases in soil water conservation and crop production on the  T&SF. Key words: slope aspect and position, soil infiltrability, sorptivity and transmissivity, soil water management


RBRH ◽  
2021 ◽  
Vol 26 ◽  
Author(s):  
Moisés Furtado Failache ◽  
Lázaro Valentin Zuquette

ABSTRACT The efficiency and suitability of different models to estimate infiltration rates in Ferralic Arenosols and Rhodic Ferralsols in southern Brazil are evaluated in this paper. The influence of nine types of land use and soil management practices on infiltration modeling is also assessed. Model parameterization was performed fitting 42 experimental infiltration curves obtained by in situ tests with a double-ring infiltrometer. Soil characterization was also performed in laboratory. The results were assessed using basic statistical descriptors and model accuracy indicators (Nash and Sutcliffe efficiency coefficient and root mean square error). The investigated models satisfactorily simulated the infiltration rates and the most accurate model was modified Kostiakov, followed by the Horton; Singh and Yu; modified Holtan; Holtan; Philip; Green and Ampt/Mein and Larson and Kostiakov. Different types of land uses and soil management practices significantly affect the infiltration rates, mainly those combination with great presence of macroporosity that resulted in an erratic infiltration behavior and affected the infiltration model accuracy.


Irriga ◽  
2002 ◽  
Vol 7 (1) ◽  
pp. 1-9
Author(s):  
Mario Artemio Urchei ◽  
Carlos Ricardo Fietz

INFILTRAÇÃO DE ÁGUA EM UM LATOSSOLO ROXO MUITO ARGILOSO EM DOIS SISTEMAS DE MANEJO   Mário Artemio UrcheiCarlos Ricardo FietzEmbrapa Agropecuária Oeste, Caixa Postal 661, 79804-970 – Dourados, MSE-mail: [email protected] e [email protected]   1 RESUMO              Este trabalho objetivou caracterizar a infiltração de água em um latossolo roxo muito argiloso em dois sistemas de manejo (preparo convencional - PC e plantio direto - PD) e avaliar a adequação das equações de Horton e Kostiakov-Lewis para a estimativa da taxa de infiltração básica. O trabalho foi desenvolvido na área experimental da Embrapa Agropecuária Oeste, em Dourados, MS, durante os anos de 1994 e 1995. Em cada um dos sistemas foram realizados 25 testes de infiltração pelo método do infiltrômetro de duplo cilindro. Considerou-se como taxa de infiltração básica observada a média aritmética dos valores lidos após 120 minutos, enquanto sua estimativa foi feita pelas equações de Horton e de Kostiakov-Lewis. A taxa de infiltração básica, nos dois sistemas de manejo, ajustou-se à distribuição normal, de acordo com o teste de Kolmogorov-Smirnov, sem diferença entre as médias de 92,2 e 92,8mm h-1 (Tukey, 5%), para os sistemas PC e PD, respectivamente, consideradas muito altas. Esses valores apresentaram alta variabilidade nos dois sistemas, com coeficientes de variação de 78,6% para o PC e 83,5% para o PD. Apesar de as duas equações terem apresentado bom ajuste, os índices estatísticos evidenciaram que a equação de Kostiakov-Lewis é mais adequada para estimar a taxa de infiltração básica no latossolo roxo estudado.   UNITERMOS: Equações de infiltração, plantio direto, preparo convencional.   URCHEI, M. A.,  FIETZ, C.R.  WATER INFILTRATION IN AN OXISOL UNDER TWO CROPPING SYSTEMS   2 ABSTRACT   This work aimed to characterize water infiltration and evaluate the adequacy of Horton and Kostiachov-Lewis’s equations to estimate basic infiltration rate in an Oxisol under conventional tillage (CT) and no tillage (NT). The work was carried out over 1994 and 1995 in an experimental area of Embrapa Agropecuaria Oeste in Dourados city, Mato Grosso do Sul State, Brazil. For each  system  25  infiltration  tests  were  performed  by  the  double  ring infiltrometer method. Basic infiltration rates were  the average  of  infiltration measured  after  120 min of adding water on the soil surface. Estimation of basic infiltration rates has been performed by using Horton and Kostiakov-Lewis’s equations. Basic infiltration rates in both systems followed normal distribution according to Kolmogorov-Smirnov’s test. Average values for basic infiltration were 92.2 and 92.8 mm h-1 for CT and NT systems, respectively. No significantly different means have been observed  (P<0.05). The variation coefficients were 78.6% for CT and 83.5% for NT. In spite of two equations good adequacy, statistical indexes showed that Kostiakov-Lewis’s equation has been more fitted to estimate basic infiltration rates for the  studied Oxisol.  KEYWORDS: Infiltration equations, no tillage, conventional tillage.


2019 ◽  
Author(s):  
Andrea D. Basche ◽  
Marcia S. DeLonge

AbstractIdentifying agricultural practices that enhance water cycling is critical, particularly with increased rainfall variability and greater risks of droughts and floods. Soil infiltration rates offer useful insights to water cycling in farming systems because they affect both yields (through soil water availability) and other ecosystem outcomes (such as pollution and flooding from runoff). For example, conventional agricultural practices that leave soils bare and vulnerable to degradation are believed to limit the capacity of soils to quickly absorb and retain water needed for crop growth. Further, it is widely assumed that farming methods such as no-till and cover crops can improve infiltration rates. Despite interest in the impacts of agricultural practices on infiltration rates, this effect has not been systematically quantified across a range of practices. To evaluate how conventional practices affect infiltration rates relative to select alternative practices (no-till, cover crops, crop rotation, introducing perennials, crop and livestock systems), we performed a meta-analysis that included 89 studies with field trials comparing at least one such alternative practice to conventional management. We found that introducing perennials (grasses, agroforestry, managed forestry) or cover crops led to the largest increases in infiltration rates (mean responses of 59.2 ± 20.9% and 34.8 ± 7.7%, respectively). Also, although the overall effect of no-till was non-significant (5.7 ± 9.7%), the practice led to increases in wetter climates and when combined with residue retention. The effect of crop rotation on infiltration rate was non-significant (18.5 ± 13.2%), and studies evaluating impacts of grazing on croplands indicated that this practice reduced infiltration rates (−21.3 ± 14.9%). Findings suggest that practices promoting ground cover and continuous roots, both of which improve soil structure, were most effective at increasing infiltration rates.


2017 ◽  
Vol 92 (3) ◽  
pp. 234
Author(s):  
Francisco Sandro Rodrigues Holanda ◽  
Renisson Neponuceno Araújo Filho ◽  
Alceu Pedrotti ◽  
Tiago Oliveira Santos ◽  
Heide Vanessa Souza Santos

The objective of this study was to evaluate the basic infiltration rate (IB), the cumulative infiltration (CI) and electrical conductivity (EC) of saturated-paste extract, in a LUVISSOLO CRÔMICO cultivated under tillage systems such as conventional tillage (CT), the minimum tillage (MT) and no-tillage (NT), on crop rotation. The infiltration basic velocity (IB) andAccumulated infiltration(CI) were determined by the ring infiltrometer; EC by thesaturated-paste method and moisture by the gravimetric method. After two and a half years of field research, the infiltration rate and cumulative infiltration was greater in NT, followed by MT and CT.Higher water infiltration rates are related to the sites where conservation practices were adopted, improving soil structure. 


Sign in / Sign up

Export Citation Format

Share Document