scholarly journals INFILTRATION OF WATER AND SALINITY IN LUVISSOLO OF THE BRAZILIAN SEMIARID CULTIVATED WITH DIFFERENT MANAGEMENT SYSTEMS

2017 ◽  
Vol 92 (3) ◽  
pp. 234
Author(s):  
Francisco Sandro Rodrigues Holanda ◽  
Renisson Neponuceno Araújo Filho ◽  
Alceu Pedrotti ◽  
Tiago Oliveira Santos ◽  
Heide Vanessa Souza Santos

The objective of this study was to evaluate the basic infiltration rate (IB), the cumulative infiltration (CI) and electrical conductivity (EC) of saturated-paste extract, in a LUVISSOLO CRÔMICO cultivated under tillage systems such as conventional tillage (CT), the minimum tillage (MT) and no-tillage (NT), on crop rotation. The infiltration basic velocity (IB) andAccumulated infiltration(CI) were determined by the ring infiltrometer; EC by thesaturated-paste method and moisture by the gravimetric method. After two and a half years of field research, the infiltration rate and cumulative infiltration was greater in NT, followed by MT and CT.Higher water infiltration rates are related to the sites where conservation practices were adopted, improving soil structure. 

Irriga ◽  
2002 ◽  
Vol 7 (1) ◽  
pp. 1-9
Author(s):  
Mario Artemio Urchei ◽  
Carlos Ricardo Fietz

INFILTRAÇÃO DE ÁGUA EM UM LATOSSOLO ROXO MUITO ARGILOSO EM DOIS SISTEMAS DE MANEJO   Mário Artemio UrcheiCarlos Ricardo FietzEmbrapa Agropecuária Oeste, Caixa Postal 661, 79804-970 – Dourados, MSE-mail: [email protected] e [email protected]   1 RESUMO              Este trabalho objetivou caracterizar a infiltração de água em um latossolo roxo muito argiloso em dois sistemas de manejo (preparo convencional - PC e plantio direto - PD) e avaliar a adequação das equações de Horton e Kostiakov-Lewis para a estimativa da taxa de infiltração básica. O trabalho foi desenvolvido na área experimental da Embrapa Agropecuária Oeste, em Dourados, MS, durante os anos de 1994 e 1995. Em cada um dos sistemas foram realizados 25 testes de infiltração pelo método do infiltrômetro de duplo cilindro. Considerou-se como taxa de infiltração básica observada a média aritmética dos valores lidos após 120 minutos, enquanto sua estimativa foi feita pelas equações de Horton e de Kostiakov-Lewis. A taxa de infiltração básica, nos dois sistemas de manejo, ajustou-se à distribuição normal, de acordo com o teste de Kolmogorov-Smirnov, sem diferença entre as médias de 92,2 e 92,8mm h-1 (Tukey, 5%), para os sistemas PC e PD, respectivamente, consideradas muito altas. Esses valores apresentaram alta variabilidade nos dois sistemas, com coeficientes de variação de 78,6% para o PC e 83,5% para o PD. Apesar de as duas equações terem apresentado bom ajuste, os índices estatísticos evidenciaram que a equação de Kostiakov-Lewis é mais adequada para estimar a taxa de infiltração básica no latossolo roxo estudado.   UNITERMOS: Equações de infiltração, plantio direto, preparo convencional.   URCHEI, M. A.,  FIETZ, C.R.  WATER INFILTRATION IN AN OXISOL UNDER TWO CROPPING SYSTEMS   2 ABSTRACT   This work aimed to characterize water infiltration and evaluate the adequacy of Horton and Kostiachov-Lewis’s equations to estimate basic infiltration rate in an Oxisol under conventional tillage (CT) and no tillage (NT). The work was carried out over 1994 and 1995 in an experimental area of Embrapa Agropecuaria Oeste in Dourados city, Mato Grosso do Sul State, Brazil. For each  system  25  infiltration  tests  were  performed  by  the  double  ring infiltrometer method. Basic infiltration rates were  the average  of  infiltration measured  after  120 min of adding water on the soil surface. Estimation of basic infiltration rates has been performed by using Horton and Kostiakov-Lewis’s equations. Basic infiltration rates in both systems followed normal distribution according to Kolmogorov-Smirnov’s test. Average values for basic infiltration were 92.2 and 92.8 mm h-1 for CT and NT systems, respectively. No significantly different means have been observed  (P<0.05). The variation coefficients were 78.6% for CT and 83.5% for NT. In spite of two equations good adequacy, statistical indexes showed that Kostiakov-Lewis’s equation has been more fitted to estimate basic infiltration rates for the  studied Oxisol.  KEYWORDS: Infiltration equations, no tillage, conventional tillage.


2003 ◽  
Vol 11 (5) ◽  
pp. 38-41
Author(s):  
Gordon Vrdoljak

Soil structure influences water supply to plant roots, aeration, water infiltration rates, suitability of soil medium for seed germination and growth, growth of plant roots, drainage, evaporation, mechanical strength, and workability (Dexter 1988). Adequate description of soil structure for cultivation, engineering, or remediation is typically done by light microscopy and transmission electron microscopy. Literature exists in numerous sources for preparation of soils for microscopy, but often preparation steps are left out due to the shortening of Methods Sections in journal articles to conserve print space. I present here, protocols I've used for preparation of tropical soils (Oxisols) for microscopy.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1192
Author(s):  
Lulu Liu ◽  
Han Yu

An unconditionally mass conservative hydrologic model proposed by Talbot and Ogden provides an effective and fast technique for estimating region-scale water infiltration. It discretizes soil moisture content into a proper but uncertain number of hydraulically interacting bins such that each bin represents a collection of pore sizes. To simulate rainfall-infiltration, a two-step alternating process runs until completion; and these two steps are surface water infiltration into bins and redistribution of inter-bin flow. Therefore, a nonlinear dynamical system in time is generated based on different bin front depths. In this study, using rigorous mathematical analysis first reveals that more bins can produce larger infiltration fluxes, and the overall flux variation is nonlinear with respect to the number of bins. It significantly implies that a greater variety of pore sizes produces a larger infiltration rate. An asymptotic analysis shows a finite change in infiltration rates for an infinite number of bins, which maximizes the heterogeneity of pore sizes. A corollary proves that the difference in the predicted infiltration rates using this model can be quantitatively bounded under a specific depth ratio of the deepest to the shallowest bin fronts. The theoretical results are demonstrated using numerical experiments in coarse and fine textured soils. Further studies will extend the analysis to the general selection of a suitable number of bins.


2020 ◽  
Author(s):  
Lena Wöhl ◽  
Stefan Schrader

&lt;p&gt;Maize (&lt;em&gt;Zea mays&lt;/em&gt;) is the most commonly cultivated energy crop throughout Europe. However, its cultivation has severe negative effects such as loss of biodiversity and its delivery of ecosystem services, soil compaction and enhanced greenhouse gas emissions. These negative effects tend to be even more pronounced in wet soils such as pseudogleys. As an alternative to annual maize, the perennial cup plant (&lt;em&gt;Silphium perfoliatum&lt;/em&gt;) is known to produce a similar yield, especially under waterlogging conditions, while management impacts of its cultivation are assumed to be less harmful to soil biota. Therefore, the aim of the present study was to quantify the provision of ecosystem services (here: control of the soil water balance) delivered by earthworm communities in wet soils under cultivation of cup plant compared with maize and to assess the ecological impact of both energy crops.&lt;/p&gt;&lt;p&gt;Fieldwork was conducted cup plant and maize fields (n = 4) in South Western Germany in spring and autumn 2019. The overall soil type was pseudo gleyic luvisol. All fields are managed for commercial purposes by farmers in the area. Sampling included earthworm extraction with allyl isothiocyanate (AITC) while the infiltration rate was measured simultaneously. Afterwards, hand sorting completed the earthworm sampling. Earthworm species, their abundance and biomass (live weight) were determined.&lt;/p&gt;&lt;p&gt;On average, earthworm abundance and biomass were higher in cup plant fields than in maize fields. In addition, variations in earthworm communities were found. While endogeic earthworms, especially of the genus &lt;em&gt;Aporrectodea&lt;/em&gt;, were present in all fields, anecic earthworms were more abundant in cup plant fields. Higher infiltration rates were measured in maize fields. Hints to a correlation between the infiltration rates and the functional earthworm groups were found.&lt;/p&gt;&lt;p&gt;Our results suggest that cup plant fields host overall more diverse earthworm communities. These communities are able to produce a wider range of ecosystem services, even though the link between the infiltration and the crops studied in this stud is not yet validated.&lt;/p&gt;


Author(s):  
Lucas dos Santos Batista ◽  
Raimundo Rodrigues Gomes Filho ◽  
Clayton Moura de Carvalho ◽  
Alceu Pedrotti ◽  
Igor Leonardo Nascimento Santos ◽  
...  

Watersheds are units of planning and environmental management having a great importance in the management of water resources and their use. To this end, knowledge about the soil's physical and water attributes is of paramount importance in the context of water dynamics in aquifer recharge areas. Water infiltration rate into the soil is considered an important variable in the hydrological cycle, as the increase in this process can lead to a reduction in erosion and consequently greater groundwater recharge. Thus, the present work aimed to evaluate the soil water infiltration rate in the phytophysiognomy of the Poxim River basin in the State of Sergipe, in the agriculture, eucalyptus and forest areas, and to observe the effect of the infiltration water rate in areas of no-till, minimum and conventional cultivation. The soil water infiltration rate was obtained through the use of double cylinder infiltrometer and estimated through the mathematical models of Kostiakov, Kostiakov-Lewis, Horton and Philip. When making comparisons between the models for estimating of soil water infiltration rates, the Horton model showed a better fit compared to the other models used, and the type of soil cover that obtained the highest infiltration rate was the forest. No-till areas provided higher water infiltration rates in the soil, contributing to greater groundwater recharge.


Soil Research ◽  
2014 ◽  
Vol 52 (6) ◽  
pp. 533 ◽  
Author(s):  
C. R. Alvarez ◽  
M. A. Taboada ◽  
S. Perelman ◽  
H. J. M. Morrás

Some topsoil physical properties evolve unfavourably under continuous, no-till farming. On the Pampa, loam soils under no-till sometimes have lower infiltration rates than those conventionally tilled; this is due to the occurrence of platy and massive structures. In this study, we aimed to identify the soil management practices that promote platy structure formation, and explain the soil physical behaviour linked to the thickness of platy structures in relation to infiltration rate, bulk density and shear strength. Six fields with different numbers of years under agriculture and diverse previous crops (maize or wheat–soybean double crop) were sampled, distinguishing within each field headlands (areas with higher traffic) and centre (lower traffic). Twenty samples were taken at random along a 200-m transect to characterise soil structure (platy, granular or massive) and the thickness of the platy structure. Principal component analysis revealed linkages between previous crop and location in each field and type of structure. ANOVA showed a significant (P < 0.05) interaction of previous crop × location. The frequency and thickness of the platy structures were lower, and those of granular structures higher, under wheat–soybean double cropping and in the centre of the field. Greater thickness of the platy structure determined lower water infiltration rate (r = –0.337; P < 0.01) and greater soil shear strength (r = 0.297, P < 0.01). Micromorphological analysis indicated the dominance of massive and platy structure in the headlands and bioturbation in the centre of the fields with wheat–soybean double cropping. These results suggest bioturbation, crop-root binding and low machinery traffic as the main factors minimising soil evolution towards unfavourable structural types under no-till farming in the area.


1953 ◽  
Vol 4 (3) ◽  
pp. 283 ◽  
Author(s):  
KP Barley

A separate of coherent organic particles obtained from soil suspensions by flotation and filtration is termed macroorganic matter. Three-year-old irrigated perennial pastures were found to have added 10 tons per acre of oven-dry macroorganic matter to a sandy loam at Deniliquin. Over half of this material hail been added to the top three inches of the soil. For any one pasture, as the macroorganic matter content of the top three inches of soil increased, infiltration rate decreased. When comparison was made at common macroorganic matter and soil moisture contents, soils under co-dominant white clover-perennial grass pastures were found to have higher infiltration rates than soils under lucerne-dominant pastures. The variability of the quantities measured is described.


Author(s):  
Tomáš Mašíček ◽  
F. Toman ◽  
M. Vičanová

The aim of this paper was to compare the rate of infiltration and cumulative infiltration in permanent grassland (PG) and in arable land over the course of the 2011 growing season. The measurement of water infiltration into soil was conducted via ponded infiltration method based on the use of two concentric cylinders in field conditions. Kostiakov equations were applied to evaluate the ponded infiltration. Based on field measurements, the dependence of infiltration rate (v) on time (t) was determined and also the dependence of cumulative infiltration (i) on time (t). In order to determine physical properties of soil and carry out a grain size analysis, intact soil samples of plough layer from the depths of 10, 20 and 30 cm were collected using Kopecký cylinders along with individual infiltration attempt in each measurement carried out on experimental plots. In order to assess the infiltration capacity of soil on experimental plots, four measurements were conducted, each with three repetitions. Infiltration attempts were held on May 12, June 28, August 24 and October 6, 2011. On average, a faster water infiltration into soil and a higher cumulative infiltration during the 2011 growing period were detected in arable land. The soil’s initial water content has proven to be the crucial factor affecting the rate of water infiltration into soil in case of PG; in case of arable land, it was bulk density indicating the soil’s compaction. The PG showed a more balanced course of infiltration rate and cumulative infiltration values during the growing season. Arable land is characterized by a greater dispersion of measured values between individual measurement dates.


2018 ◽  
Vol 8 (4) ◽  
pp. 503-513
Author(s):  
José Mário Piratello Freitas de Souza ◽  
Lúcia Helena Cunha dos Anjos ◽  
Marcos Gervasio Pereira ◽  
Roni Fernandes Guareschi ◽  
João Henrique Gaia-Gomes

The effects of conventional tillage (CT), level cultivation (LC), minimum cultivation (MC) and a plot without a cover crop (WC) in the contents of soil nutrients (P, K, Ca and Mg), total organic carbon (TOC), bulk density (Bd), soil water infiltration rate (BIR) and losses of TOC and nutrients (P and K) by erosion were evaluated in areas with the cultivation of horticultural crops. Wischmeier plots were installed in an Oxisol with 30% of slope. Soil samples were collected at 0.0-0.05 and 0.05-0.10 m depths to physical and chemical characterization. The WC plot reduces soil SWIR values and lead to a higher losses soil, TOC and macronutrients (Ca, P, Mg and K). The CT resulted in higher losses of soil, TOC, P and K by erosion, contributing to reduce the TOC, P, Ca, Mg and SWIR of the soil. The MC was the most indicated management, since it helps to reduce losses of soil, TOC, P and K by erosion, and increase the TOC, BIR, P, K, Ca and Mg of the soil. The LC when compared to the CT reduces the losses of soil TOC, P and K by erosion, and increase the BIR values.


2021 ◽  
Vol 42 (1) ◽  
pp. 123-136
Author(s):  
Jonez Fidalski ◽  
◽  
Ivan Bordin ◽  
Sérgio José Alves ◽  
Graziela Moraes de Cesare Barbosa ◽  
...  

Grazing intensity on palisade grass as a function of grazing height in a crop-livestock integration (CLI) system alters the structural soil quality and water infiltration. This study aimed to verify the magnitude of the stocking rate and shoot and root dry matter of palisade grass at the end of the fifth cattle grazing period of an experiment in the CLI system on the visual evaluation of soil structure (VESS), soil-water infiltration rate, and basic infiltration rate (BIR) as a function of grazing heights on Urochloa brizantha cv. MG 5 Vitória in the northwestern Paraná State, Brazil. The experimental design consisted of randomized blocks with three replications and 1-ha experimental plots on an Oxisol. Four treatments with grazing heights of 10, 20, 30, and 40 cm were used in the CLI system, controlled with variable stocking rates of Purunã cattle in the autumn/winter season on Urochloa brizantha cv. MG 5 Vitória in succession to soybean in the summer. The maximum soil water infiltration was stabilized at 30 cm of grazing height of the palisade grass under continuous grazing in the CLI system. The increase in the stocking rate decreased the shoot dry matter of palisade grass, soil water infiltration, and structural soil quality.


Sign in / Sign up

Export Citation Format

Share Document