Long-term application of olive-mill wastewater affects soil chemical and microbial properties

Soil Research ◽  
2015 ◽  
Vol 53 (4) ◽  
pp. 461 ◽  
Author(s):  
V. Kavvadias ◽  
M. Doula ◽  
M. Papadopoulou ◽  
Sid. Theocharopoulos

Disposal of untreated olive-mill wastewater (OMW) is a major environmental problem in many Mediterranean countries. This study assessed the impact of OMW application on soil microbiological properties and explored the relationship to soil chemical properties during a 9-month, periodical soil-sampling campaign in a pilot study area in Crete, South Greece. Cases studied involved: direct application of OMW on soil; OMW disposal in active evaporation ponds; sites hosting evaporation ponds that have been inactive for the past 9 years; sites downstream of active evaporation ponds; and control soils, upstream of the waste-disposal ponds. Long-term OMW disposal on land affected the main soil chemical properties. Applicability of the results from the systematic monitoring was confirmed by results obtained in other OMW disposal sites around the pilot area. Soil microbial properties (microbial activity, microbial biomass carbon, and metabolic quotient) were considerably affected by OMW disposal. Moreover, seasonal changes of soil properties revealed short- and long-term residual effects due to OMW disposal. Significant correlations were observed among soil microbial characteristics and soil chemical properties, clearly indicating a close relationship between chemical properties and the transformation of microbial communities in soil after OMW land spreading. The determination of a key set of chemical and microbiological parameters that can be used as indicators for monitoring soil quality at olive-mill waste-disposal areas will verify the efficiency of the techniques used for the land disposal of OMW and will consequently promote their sustainable management.

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2562
Author(s):  
Luca Regni ◽  
Daniela Pezzolla ◽  
Simona Ciancaleoni ◽  
Giorgio Marozzi ◽  
Emidio Albertini ◽  
...  

The long-term effects of the olive mill wastewater (OMWW) spreading on soil chemical properties, microbial community, and olive tree parameters have been far poorly investigated. Therefore, this study aims to evaluate the effect of OMWW application on an olive orchard, and samples were collected at two different depths (0–20 cm and 20–40 cm) and 14 days, one year and two years from the end of the OMWW spreading on soil chemical characteristics and soil microbial structures. Variations of soil chemical parameters (pH, salinity, available P, and water-extractable organic C) were observed particularly at 14 days after spreading at both depths. All these parameters reached similar values to the soil after two years, except for available phosphorus. Firmicutes, Proteobacteria, and Actinobacteria are the most abundant phyla: only Firmicutes were negatively affected by the OMWW spreading after 14 days, suggesting that Gram-positive bacteria were probably negatively influenced by the addition of OMWW. The abundance of bacterial taxa in the soil is restored along time, except for the decrease of Firmicutes. This evidence suggests that the OMWW spreading in the long term does not affect the endemic soil bacterial community of the olive grove, as well as leaf net photosynthesis, the olive tree vegetative activity, yield, and fruits characteristics.


2021 ◽  
Vol 402 ◽  
pp. 123481 ◽  
Author(s):  
J.A. Sáez ◽  
M.D. Pérez-Murcia ◽  
A. Vico ◽  
M.R. Martínez-Gallardo ◽  
F.J. Andreu-Rodríguez ◽  
...  

2018 ◽  
pp. 291-298
Author(s):  
S. Ayoub ◽  
I. Bashabsheh ◽  
K. Abulaila ◽  
S. Damer ◽  
Z. Khreisat ◽  
...  

Author(s):  
Jehan Khalil ◽  
Hasan Habib ◽  
Michael Alabboud ◽  
Safwan Mohammed

AbstractOlive mill wastewater is one of the environmental problems in semiarid regions. The main goals of this study were to investigate the impacts of different olive mill wastewater levels on durum wheat (Triticum aestivum var. Douma1) production and soil microbial activities (i.e., bacteria and fungi). A pot experiment was conducted during the growing seasons 2015/2017 to evaluate the effect of three levels of olive mill wastewater on both growth and productivity attributes of wheat. Vertisol soil samples were collected from southern Syria. Two months before wheat cultivation, three levels of olive mill wastewater: T5 (5 L/m 2), T10 (10 L/m2) and T15 (15 L/m 2) were added to pots filled with the collected soil samples. Also, a control (T0) free of olive mill wastewater was considered as a reference. Results showed a significant increase (p < 0.05) in germination rate (%), plant height (cm), ear length (cm), kernels number, kernels weight per ear (g) and grain yield (g/m2) compared to control. However, T5 treatment did not induce a significant increase in terms of ear length, kernels weight per ear or yield (in the second season). On the other hand, T10 treatment had recorded the best results compared with the other two treatments (T5, T15). Similarly, the results showed a significant increase in the number of bacterial and fungi cells by increasing olive mill wastewater concentration. This research provides promising results toward using olive mill wastewater in an eco-friendly way under Syrian conditions.


2015 ◽  
Vol 63 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Karsten Schacht ◽  
Bernd Marschner

Abstract The use of treated wastewater (TWW) for agricultural irrigation becomes increasingly important in water stressed regions like the Middle East for substituting fresh water (FW) resources. Due to elevated salt concentrations and organic compounds in TWW this practice has potential adverse effects on soil quality, such as the reduction of hydraulic conductivity (HC) and soil aggregate stability (SAS). To assess the impact of TWW irrigation in comparison to FW irrigation on HC, in-situ infiltration measurements using mini disk infiltrometer were deployed in four different long-term experimental orchard test sites in Israel. Topsoil samples (0-10 cm) were collected for analyzing SAS and determination of selected soil chemical and physical characteristics. The mean HC values decreased at all TWW sites by 42.9% up to 50.8% compared to FW sites. The SAS was 11.3% to 32.4% lower at all TWW sites. Soil electrical conductivity (EC) and exchangeable sodium percentage (ESP) were generally higher at TWW sites. These results indicate the use of TWW for irrigation is a viable, but potentially deleterious option, as it influences soil physical and chemical properties.


2018 ◽  
Vol 47 (6) ◽  
pp. 1327-1338 ◽  
Author(s):  
A. J. Ashworth ◽  
F. L. Allen ◽  
J. M. DeBruyn ◽  
P. R. Owens ◽  
C. Sams

Sign in / Sign up

Export Citation Format

Share Document