Nitrous oxide emission from two acidic soils as affected by dolomite application

Soil Research ◽  
2014 ◽  
Vol 52 (8) ◽  
pp. 841 ◽  
Author(s):  
Muhammad Shaaban ◽  
Qian Peng ◽  
Shan Lin ◽  
Yupeng Wu ◽  
Jinsong Zhao ◽  
...  

The effect of dolomite (CaMg(CO3)2) application on nitrous oxide (N2O) emission was examined in a laboratory study with soil from a rice paddy–rapeseed rotation (PR soil, pH 5.25) and from a rice paddy–fallow–flooded rotation soil (PF soil, pH 5.52). The soils were treated with 0, 0.5 (L) and 1.5 (H) g dolomite 100 g–1 soil. Results showed that N2O emissions were higher in control treatments (untreated dolomite) in both soils. Application of dolomite decreased N2O emissions significantly (P ≤ 0.001) as soil pH increased in both soils. The H treatment was more effective than the L treatment for the reduction of N2O emissions. The H treatment decreased the cumulative N2O emissions by up to 73.77% in PR soil and 64.07% in PF soil compared with the control. The application of dolomite also affected concentrations of dissolved organic carbon, microbial biomass carbon, ammonium and nitrate in soils, which related to N2O emission. The results suggest that dolomite not only counteracts soil acidification but also has the potential to mitigate N2O emissions in acidic soils.

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2462
Author(s):  
Muhammad Aamer ◽  
Muhammad Bilal Chattha ◽  
Athar Mahmood ◽  
Maria Naqve ◽  
Muhammad Umair Hassan ◽  
...  

Biochar application is considered an effective approach to mitigating nitrous oxide (N2O) emissions from agricultural soils. However, the mechanisms of biochar to mitigate N2O emissions from acidic red soils are still unclear. Therefore, the present study aims to underpin mechanisms associated with rice residue-based biochar in mitigating N2O emissions from acid soils. Soil treated with different rates of biochar control, from 1%, 2%, and 3%, and different soil properties, including soil pH, microbial biomass carbon (MBC), NH4+-N, NO3−-N, genes abundance (nosZ, nirK, AOA, and AOB), and enzymatic activities ((nitrate reductase (NR) and urease (UR)) were studied. The application of 3% biochar increased the soil pH (5.21–6.48), MBC (565–685 mg/kg), NO3−-N contents (24.23–44.5 mg/kg), genes abundance (nosZ, nirK, AOA, and AOB) and UR activity. The highest N2O emission (43.60 μg kg−1) was recorded and compared with the application of 1% (26.3 μg kg−1), 2% (18.33 μg kg−1), and 3% biochar (8.13 μg kg−1). Applying 3% biochar effectively reduced the N2O emission due to increased soil pH, MBC, NO3−-N contents, genes abundance (nosZ, nirK, AOA, and AOB), and weakened NH4+-N and NR activities. Therefore, increasing soil pH, genes abundance, and weakened nitrification following the addition of rice residue-based biochar can effectively reduce the N2O emissions from acidic red soils.


2021 ◽  
Vol 42 (5) ◽  
pp. 1379-1386
Author(s):  
B. Gogoi ◽  
◽  
B. Kalita ◽  
I. Bhupenchandra ◽  
P. Sutradhar ◽  
...  

Aim: To investigate the effect of different organic manures on the performance of toria crop and to understand their impact on the soil properties and availability of nutrients in acidic sandy loam soil. Methodology: Three-year fixed plot study was conducted with 7 treatments viz., T1: control, T2: recommended dose of fertilizers (RDF), T3: cow dung manure @ 5 t ha-1, T4: pig dung manure @ 5 t ha-1, T5: goat dung manure @ 5 t ha-1, T6: farm yard manure (FYM) @ 5 t ha-1, and T7: vermicompost @ 5 t ha-1 replicating 3 times in a complete randomized block design. Data were collected and analysed following the standard procedures. The yield and yield attributing parameters of toria and the soil properties such as soil pH, organic carbon, microbial biomass carbon and available NPK were studied. Results: Application of different organic manures significantly affected the plant height, number of primary branches per plant, number of siliquae per branch, number of seeds siliqua and 1000-seed weight of toria crop. Addition of organic manure significantly enhanced the soil organic carbon, microbial biomass carbon and available NPK in the soil over initial, except soil pH. The cost of cultivation, gross return and net return varied from 10.50 ×103 to 23.10 ×103, 15.00 ×103 to 35.10 ×103 and 4.46 ×103 to 19.96 ×103 Rs. ha-1, respectively. The B:C ratio varied in the order of goat dung manure > cow dung manure >RDF >FYM > pig dung manure > vermicompost > control treatment. Interpretation: To achieve maximum performance with nourishment of soil quality and health, application of vermicompost was confirmed to be the best over other organic sources of nutrients primarily due to enhancement in C and N status and an increase in microbial activities in soil.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 508 ◽  
Author(s):  
Zhiwei Ge ◽  
Shuiyuan Fang ◽  
Han Chen ◽  
Rongwei Zhu ◽  
Sili Peng ◽  
...  

Soil resident water-stable macroaggregates (diameter (Ø) > 0.25 mm) play a critical role in organic carbon conservation and fertility. However, limited studies have investigated the direct effects of stand development on soil aggregation and its associated mechanisms. Here, we examined the dynamics of soil organic carbon, water-stable macroaggregates, litterfall production, fine-root (Ø < 1 mm) biomass, and soil microbial biomass carbon with stand development in poplar plantations (Populus deltoides L. ‘35’) in Eastern Coastal China, using an age sequence (i.e., five, nine, and 16 years since plantation establishment). We found that the quantity of water-stable macroaggregates and organic carbon content in topsoil (0–10 cm depth) increased significantly with stand age. With increasing stand age, annual aboveground litterfall production did not differ, while fine-root biomass sampled in June, August, and October increased. Further, microbial biomass carbon in the soil increased in June but decreased when sampled in October. Ridge regression analysis revealed that the weighted percentage of small (0.25 mm ≤ Ø < 2 mm) increased with soil microbial biomass carbon, while that of large aggregates (Ø ≥ 2 mm) increased with fine-root biomass as well as microbial biomass carbon. Our results reveal that soil microbial biomass carbon plays a critical role in the formation of both small and large aggregates, while fine roots enhance the formation of large aggregates.


2009 ◽  
Vol 6 (4) ◽  
pp. 6749-6780 ◽  
Author(s):  
R. Guicharnaud ◽  
O. Arnalds ◽  
G. I. Paton

Abstract. Temperature change is acknowledged to have a significance effect on soil biological processes and the corresponding sequestration of carbon and the cycling of key nutrients. Soils at high latitudes are likely to be particularly impacted by increases in temperature. In this study, the response of a range of soil microbial parameters (respiration, nutrient availability, microbial biomass carbon, arylphosphatase and dehydrogenase activity) to temperature changes was measured in sub-arctic soils collected from across Iceland. Sample sites reflected two soil temperature regimes (cryic and frigid) and two land uses (pasture and arable). The soils were sampled from the field frozen, equilibrated at −20°C and then incubated for two weeks at −10°C, −2°C, +2°C and +10°C. Respiration and enzymatic activity were temperature dependent. Microbial biomass carbon and nitrogen mineralisation did not change with temperature. The main factor controlling soil respiration at −10°C was the concentration of dissolved organic carbon. At −10°C, dissolved organic carbon accounted for 88% of the fraction of labile carbon which was significantly greater than that recorded at +10°C when dissolved organic carbon accounted for as low as 42% of the labile carbon fraction. Heterotrophic microbial activity is governed by both substrate availability and the temperature and this has been described by the Q10 factor. Elevated temperatures in the short term may have little effect on the size of the microbial biomass but will have significant impacts on the release of carbon through respiration. These results demonstrate that gradual changes in temperature across large areas at higher latitudes will have considerable impacts in relation to global soil carbon dynamics.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8531 ◽  
Author(s):  
Yulu Zhang ◽  
Dong Cui ◽  
Haijun Yang ◽  
Nijat Kasim

Background A wetland is a special ecosystem formed by the interaction of land and water. The moisture content variation will greatly affect the function and structure of the wetland internal system. Method In this paper, three kinds of wetlands with different flooding levels (Phragmites australis wetland (long-term flooding), Calamagrostis epigeios wetland(seasonal flooding) and Ditch millet wetland (rarely flooded)) in Ili Valley of Xinjiang China were selected as research areas. The changes of microbial biomass carbon, soil physical and chemical properties in wetlands were compared, and redundancy analysis was used to analyze the correlation between soil physical and chemical properties, microbial biomass carbon and enzyme activities (soil sucrase, catalase, amylase and urease). The differences of soil enzyme activities and its influencing factors under different flooding conditions in Ili Valley were studied and discussed. Result The results of this study were the following: (1) The activities of sucrase and amylase in rarely flooded wetlands and seasonally flooded wetlands were significantly higher than those in long-term flooded wetlands; the difference of catalase activity in seasonal flooded wetland was significant and the highest. (2) Redundancy analysis showed that soil organic carbon, dissolved organic carbon, total phosphorus and soil microbial biomass carbon had significant effects on soil enzyme activity (p < 0.05). (3) The correlation between soil organic carbon and the sucrase activity, total phosphorus and the catalase activity was the strongest; while soil organic carbon has a significant positive correlation with invertase, urease and amylase activity, with a slight influence on catalase activity. The results of this study showed that the content of organic carbon, total phosphorus and other soil fertility factors in the soil would be increased and the enzyme activity would be enhanced if the flooding degree was changed properly.


2018 ◽  
Vol 2 ◽  
pp. 96-101
Author(s):  
Dil Kumar Limbu ◽  
Madan Koirala

The soil microbial biomass carbon to soil organic carbon ratio is a useful measure to monitor soil organic matter and serves as a sensitive index than soil organic carbon alone. Thus, the objective of this study is to identify and quantify the present status of ratio of soil microbial biomass carbon to soil organic carbon in Himalayan rangeland and to make recommendations for enhancing balance between microbial carbon and organic carbon of the soil. To meet the aforementioned objective, a field study was conducted from 2011 to 2013 following the Walkley-Black, Chromic acid wet oxidation method, and chloroform fumigation method for analysis of microbial carbon and organic carbon respectively. The study showed that the heavily grazed plot had significantly less value of ratio than occasionally grazed and ungrazed plots. The ratio was significantly high on legume seeding plot compared to nonlegume plot, but the ratio was independent of soil depth. Soil microbial biomass appeared to be more responsive than soil organic matter.


Agropedology ◽  
2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Christy Sangma ◽  
◽  
A. Thirugnanavel ◽  
Ph. Romen Sharma ◽  
G. Rajesha ◽  
...  

The pineapple var. Kew was planted on black polythene film mulching with double hedgerow planting to find out the influence of mulches on soil and plant. The soil samples were collected twice (kharif and rabi) at two different depths (0-15 and 15-30 cm), and the pH, soil organic carbon (SOC), nitrogen, phosphorus, potassium, basal respiration and soil microbial biomass carbon were analysed. The data revealed that soil organic carbon and available N, P, and K content were slightly higher in the bottom hill than the top hill. The mulched field had higher nutrients than the non-mulched field. The fertility level varied slightly between the seasons. The biological parameters (microbial biomass carbon) were observed to be significantly higher (P≤0.05) in the bottom hill in both the seasons than the non-mulched field. The soil moisture content ranged from 5.9 % in March to 24.24 % August in the bottom hill (15-30 cm depth). The moisture content in the non-mulched field was lower than the mulched field.


2020 ◽  
Author(s):  
Deborah Linsler ◽  
Jacqueline Gerigk ◽  
Ilka Schmoock ◽  
Rainer Georg Jörgensen ◽  
Martin Potthoff

&lt;p&gt;Reduced tillage is assumed to be a suitable practice to maintain and promote microbial biomass and microbial activity in the soil. The microbial biomass in particular is considered as a sensitive indicator for detecting soil disturbances. The objective of this study was to quantify the influence of different tillage practices on microbial parameters in the soil. Furthermore, we analyzed the relation of those microbial parameters with site-specific conditions.&lt;/p&gt;&lt;p&gt;To get a deeper insight in that topic, soils from different fields of agricultural farms with different tillage practices in France (12 fields), Romania (15 fields) and Sweden (17 fields) were examined within the &amp;#8220;SoilMan project&amp;#8221;. The tillage practices were no-tillage (absence of any tillage), minimum tillage (non-inversion tillage for instance by chisel plough or cultivator) and conventional tillage (inversion tillage by ploughing), all of which were carried out for at least five years prior to sampling. Soil samples were taken in spring 2018 from all fields under winter wheat (Triticum aestivum) at three soil depths (0-10 cm, 10-20 cm, 20-30 cm). As microbial parameters we measured microbial biomass carbon and nitrogen contents, ergosterol contents (as proxy for fungi) and basal respiration rates. For site-specific conditions we measured soil organic carbon, total nitrogen and total phosphorus contents, texture, pH and the soil water content.&lt;/p&gt;&lt;p&gt;Results show that microbial biomass carbon and nitrogen were more affected by soil type and soil texture as well as climatic conditions (mean precipitation and temperature) than by tillage practices. For instance, an increased clay content had a positive effect on the microbial biomass and, in addition to the higher average annual temperature, explained the generally low values &amp;#8203;&amp;#8203;in France. The lack of inversion tillage primarily led to stratified levels of soil organic carbon, microbial biomass carbon and ergosterol contents, which can be explained by the lack of crop residue incorporation. There were hardly any differences in microbial indicators between the tillage intensities when looking at the whole of the sampled soil profile (0-30 cm). In France, the microbial biomass carbon / soil organic carbon ratio was lower for no-tillage than for conventional tillage, which may indicate, among other things, that the mechanically ground organic matter incorporated into the soil under conventional tillage was better colonized by microorganisms. However, this effect could not be confirmed in the other countries. The metabolic quotient was generally increased at the lowest sampled depth (20-30 cm), irrespective of the cultivation.&lt;/p&gt;&lt;p&gt;We can conclude that the soil tillage intensity influenced the distribution of microbial biomass carbon and soil organic carbon contents more strongly than the total amounts in the sampled soil profile and that the soil texture had a greater impact on microbial soil properties than the agricultural management practice.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document