Sulfur-enriched biochar as a potential soil amendment and fertiliser

Soil Research ◽  
2017 ◽  
Vol 55 (1) ◽  
pp. 93 ◽  
Author(s):  
Hongjie Zhang ◽  
R. Paul Voroney ◽  
G. W. Price ◽  
Andrew J. White

Hydrogen sulfide (H2S) is a highly toxic and corrosive contaminant gas co-generated during anaerobic digestion. Studies have shown that biochars have the potential to adsorb H2S and to promote its oxidisation. To date, no studies have investigated the bioavailabilty to plants of the sulfur (S) contained in biochar when used as an S fertiliser. Biochar was packed into the biogas emissions stream to adsorb the H2S being generated. The resulting sulfur-enriched biochar (SulfaChar) and synthetic S fertiliser (control treatment) were amended to potting soils and the growth response of corn (Zea mays L.) and soybeans [Glycine max (L.) Merr.] and nutrient uptake were measured after a 90-day greenhouse study. SulfaChar contained 36.5% S (S element and SO42–), confirming it adsorbed significant amounts of H2S. Compared with the control treatment, SulfaChar amendment significantly increased corn plant biomass, ranging from 31% to 49% but only a slight increase in soybean biomass (4 to 14%). SulfaChar also increased corn plant uptake of S and other macro- (N, P, K, Ca, and Mg) and micro-nutrients (Zn, Mn and B). Our results show that SulfaChar was a source of plant available S, suggesting that SulfaChar is either a supplier of these nutrients or that it promoted their uptake.

Author(s):  
Subin Kalu ◽  
Gboyega Nathaniel Oyekoya ◽  
Per Ambus ◽  
Priit Tammeorg ◽  
Asko Simojoki ◽  
...  

AbstractA 15N tracing pot experiment was conducted using two types of wood-based biochars: a regular biochar and a Kon-Tiki-produced nutrient-enriched biochar, at two application rates (1% and 5% (w/w)), in addition to a fertilizer only and a control treatment. Ryegrass was sown in pots, all of which except controls received 15N-labelled fertilizer as either 15NH4NO3 or NH415NO3. We quantified the effect of biochar application on soil N2O emissions, as well as the fate of fertilizer-derived ammonium (NH4+) and nitrate (NO3−) in terms of their leaching from the soil, uptake into plant biomass, and recovery in the soil. We found that application of biochars reduced soil mineral N leaching and N2O emissions. Similarly, the higher biochar application rate of 5% significantly increased aboveground ryegrass biomass yield. However, no differences in N2O emissions and ryegrass biomass yields were observed between regular and nutrient-enriched biochar treatments, although mineral N leaching tended to be lower in the nutrient-enriched biochar treatment than in the regular biochar treatment. The 15N analysis revealed that biochar application increased the plant uptake of added nitrate, but reduced the plant uptake of added ammonium compared to the fertilizer only treatment. Thus, the uptake of total N derived from added NH4NO3 fertilizer was not affected by the biochar addition, and cannot explain the increase in plant biomass in biochar treatments. Instead, the increased plant biomass at the higher biochar application rate was attributed to the enhanced uptake of N derived from soil. This suggests that the interactions between biochar and native soil organic N may be important determinants of the availability of soil N to plant growth.


Soil Research ◽  
2008 ◽  
Vol 46 (7) ◽  
pp. 578 ◽  
Author(s):  
K. M. Spark ◽  
R. S. Swift

Vast quantities of flyash are generated annually by the burning of coal in the power industry, with most of this material being stockpiled with little prospect of being utilised at present. Two alkaline flyash-based products (FAP) for use as soil amendments (FAP1 and FAP2) have been assessed using glasshouse pot trials to determine the suitability of using these products to treat acid soils. The products both contain ~80% flyash which originated from coal-fired electricity generation. The acid soils used in the study were 2 Podsols and a Ferrosol, all originating from south-east Queensland and ranging in pH (1 : 5 suspension in water) from 4 to 5.5. The flyash products when applied to the soil significantly enhanced growth of maize plants (Zea mays L.), with optimal application rates in the range 1.25–5% w/w. The FAP/soil mixtures and plants were analysed using a range of methods including extraction with DTPA, and plant biomass (aboveground dry matter). The results indicate that in addition to the liming effect, the flyash in the alkaline flyash products may enhance plant growth as a result of increasing the uptake of micro-nutrients such as copper, zinc, and manganese. The study suggests that flyash has the potential to be used as a base material in the production of soil amendment materials that can change soil pH and act as a fertiliser for certain soil micro-nutrients such as Cu, Mn, and Zn.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1004
Author(s):  
John Lobulu ◽  
Hussein Shimelis ◽  
Mark D. Laing ◽  
Arnold Angelo Mushongi ◽  
Admire Isaac Tichafa Shayanowako

Striga species cause significant yield loss in maize varying from 20 to 100%. The aim of the present study was to screen and identify maize genotypes with partial resistance to S. hermonthica (Sh) and S. asiatica (Sa) and compatible with Fusarium oxysporum f. sp. strigae (FOS), a biocontrol agent. Fifty-six maize genotypes were evaluated for resistance to Sh and Sa, and FOS compatibility. Results showed that FOS treatment significantly (p < 0.001) enhanced Striga management compared to the untreated control under both Sh and Sa infestations. The mean grain yield was reduced by 19.13% in FOS-untreated genotypes compared with a loss of 13.94% in the same genotypes treated with FOS under Sh infestation. Likewise, under Sa infestation, FOS-treated genotypes had a mean grain yield reduction of 18% while untreated genotypes had a mean loss of 21.4% compared to the control treatment. Overall, based on Striga emergence count, Striga host damage rating, grain yield and FOS compatibility, under Sh and Sa infestations, 23 maize genotypes carrying farmer preferred traits were identified. The genotypes are useful genetic materials in the development of Striga-resistant cultivars in Tanzania and related agro-ecologies.


Author(s):  
L. M. Manici ◽  
F. Caputo ◽  
G. A. Cappelli ◽  
E. Ceotto

Abstract Soil suppressiveness which is the natural ability of soil to support optimal plant growth and health is the resultant of multiple soil microbial components; which implies many difficulties when estimating this soil condition. Microbial benefits for plant health from repeated digestate applications were assessed in three experimental sites surrounding anaerobic biogas plants in an intensively cultivated area of northern Italy. A 2-yr trial was performed in 2017 and 2018 by performing an in-pot plant growth assay, using soil samples taken from two fields for each experimental site, of which one had been repeatedly amended with anaerobic biogas digestate and the other had not. These fields were similar in management and crop sequences (maize was the recurrent crop) for the last 10 yr. Plant growth response in the bioassay was expressed as plant biomass production, root colonization frequency by soil-borne fungi were estimated to evaluate the impact of soil-borne pathogens on plant growth, abundance of Pseudomonas and actinomycetes populations in rhizosphere were estimated as beneficial soil microbial indicators. Repeated soil amendment with digestate increased significantly soil capacity to support plant biomass production as compared to unamended control in both the years. Findings supported evidence that this increase was principally attributable to a higher natural ability of digestate-amended soils to reduce root infection by saprophytic soil-borne pathogens whose inoculum was increased by the recurrent maize cultivation. Pseudomonas and actinomycetes were always more abundant in digestate-amended soils suggesting that both these large bacterial groups were involved in the increase of their natural capacity to control soil-borne pathogens (soil suppressiveness).


1998 ◽  
Vol 22 (2) ◽  
pp. 311-317 ◽  
Author(s):  
I. F. Silva ◽  
J. Mielniczuk

Em um Latossolo Roxo de Santo Ângelo (RS), e em um Podzólico Vermelho-Escuro de Eldorado do Sul (RS), ambos com textura argilosa, submetidos o primeiro à exploração com cultivo convencional de trigo (Triticum aestivum L.) e soja (Glycine max L.) e sob setária (Setaria anceps L.), e o segundo à exploração com capim-pangola (Digitaria decumbens L.), siratro (Macroptilium atropurpureum L.), plantio direto com aveia (Avena bizantina L.)/milho (Zea mays L.) e área sem vegetação, foi realizado o presente trabalho durante a safra de verão (1990/1991), com o objetivo de avaliar a estabilidade e a agregação do solo sob diferentes sistemas de cultivo. Constatou-se, nessa avaliação, que as gramíneas perenes por meio do seu sistema radicular tiveram grande efeito na agregação e estabilidade dos agregados do solo e que os teores de carbono orgânico, de ferro e alumínio-oxalato, argila e grau de dispersão tiveram também efeitos na agregação do solo, porém insuficientes para explicar as variações entre o diâmetro médio ponderado dos agregados sob os diferentes sistemas de cultivo.


2013 ◽  
Vol 10 (6) ◽  
pp. 3869-3887 ◽  
Author(s):  
R. Q. Thomas ◽  
G. B. Bonan ◽  
C. L. Goodale

Abstract. In many forest ecosystems, nitrogen (N) deposition enhances plant uptake of carbon dioxide, thus reducing climate warming from fossil fuel emissions. Therefore, accurately modeling how forest carbon (C) sequestration responds to N deposition is critical for understanding how future changes in N availability will influence climate. Here, we use observations of forest C response to N inputs along N deposition gradients and at five temperate forest sites with fertilization experiments to test and improve a global biogeochemical model (CLM-CN 4.0). We show that the CLM-CN plant C growth response to N deposition was smaller than observed and the modeled response to N fertilization was larger than observed. A set of modifications to the CLM-CN improved the correspondence between model predictions and observational data (1) by increasing the aboveground C storage in response to historical N deposition (1850–2004) from 14 to 34 kg C per additional kg N added through deposition and (2) by decreasing the aboveground net primary productivity response to N fertilization experiments from 91 to 57 g C m−2 yr−1. Modeled growth response to N deposition was most sensitive to altering the processes that control plant N uptake and the pathways of N loss. The response to N deposition also increased with a more closed N cycle (reduced N fixation and N gas loss) and decreased when prioritizing microbial over plant uptake of soil inorganic N. The net effect of all the modifications to the CLM-CN resulted in greater retention of N deposition and a greater role of synergy between N deposition and rising atmospheric CO2 as a mechanism governing increases in temperate forest primary production over the 20th century. Overall, testing models with both the response to gradual increases in N inputs over decades (N deposition) and N pulse additions of N over multiple years (N fertilization) allows for greater understanding of the mechanisms governing C–N coupling.


1998 ◽  
Vol 28 (2) ◽  
pp. 199-204
Author(s):  
Deny Alves Alvarenga ◽  
Pedro Milanez de Rezende ◽  
Messias José Bastos de Andrade ◽  
Luiz Antônio de Bastos Andrade

O presente trabalho foi realizado com o objetivo de avaliar o comportamento da soja [ Glycine max (L.) Merrill ] cultivar Doko e do milho (Zea mays L.) cultivar BR 201 quando consorciados em diferentes sistemas de semeadura. O experimento foi conduzido no ano agrícola 1992/1993. em área experimental da Universidade Federal de Lavras, em Latossolo roxo distrófico, textura argilosa. O delineamento experimental utilizado foi blocos casualizados, com três repetições em esquema fatorial (3x3+4) constituído por três sistemas de consórcio (soja na linha do milho; soja na entrelinha do milho e soja em ambas linha e entrelinha) e três formas de semeadura do milho uma planta a cada 25cm, duas plantas e cada 50cm e quatro plantas a cada 100cm e mais 4 tratamentos adicionais representados pelos monocultivos das três formas de semeadura do milho e a da soja. A cultura do milho não foi influenciada pelos sistemas de semeadura empregados e nem pela presença da cultura da soja em consórcio. A soja consorciada em relação ao monocultivo apresentou maior acamamento e menor rendimento de grãos. Entre os sistemas de consórcio, a semeadura simultânea de soja nas linhas e entrelinhas do milho foi o que proporcionou o maior rendimento de grãos. A eficiência dos sistemas consorciadas sobre o monocultivo foi evidenciado com valor médio da razão de área equivalente (RAE) de 1,40.


2014 ◽  
Vol 11 (15) ◽  
pp. 4099-4114 ◽  
Author(s):  
J. F. Dean ◽  
J. A. Webb ◽  
G. E. Jacobsen ◽  
R. Chisari ◽  
P. E. Dresel

Abstract. The chemical composition of groundwater and surface water is often considered to be dominated by water–rock interactions, particularly weathering; however, it has been increasingly realised that plant uptake can deplete groundwater and surface water of nutrient elements. Here we show, using geochemical mass balance techniques, that water–rock interactions do not control the hydrochemistry at our study site within a granite terrain in southwest Victoria, Australia. Instead the chemical species provided by rainfall are depleted by plant biomass uptake and exported, predominantly through fire. Regular landscape burning by Aboriginal land users is hypothesized to have caused the depletion of chemical species in groundwater for at least the past 20 000 yr by accelerating the export of elements that would otherwise have been stored within the local biomass. These findings are likely to be applicable to silicate terrains throughout southeast Australia, as well as similar lithological and climatic regions elsewhere in the globe, and contrast with studies of groundwater and surface water chemistry in higher rainfall areas of the Northern Hemisphere, where water–rock interactions are the dominant hydrochemical control.


2001 ◽  
Vol 36 (2) ◽  
pp. 235-241 ◽  
Author(s):  
Francisco Jorge Cividanes ◽  
José Carlos Barbosa

Procurou-se avaliar os efeitos do plantio direto e da consorciação soja (Glycine max (L.) Merrill) e milho (Zea mays L.) sobre pragas e inimigos naturais. Os tratamentos constituíram um fatorial 3 x 2 (monocultura de soja, monocultura de milho, consorciação soja-milho x plantio direto, plantio convencional), em blocos casualizados. Os insetos foram amostrados pelo método do pano, rede entomológica, procura visual e armadilha de sucção. Entre os insetos-pragas do milho, Maecolaspis assimilis ocorreu em maior número no sistema de plantio convencional; o mesmo ocorreu com os predadores Cycloneda sanguinea e Doru sp. Por outro lado, M. assimilis e o predador Toxomerus sp. foram mais numerosos na monocultura de milho em relação à cultura do milho consorciado com soja. Dos insetos-pragas da soja, destacaram-se pelo maior número Anticarsia gemmatalis e Diabrotica gracilenta, no sistema de plantio convencional, e o mesmo aconteceu com a espécie da família Trichogrammatidae, enquanto as espécies da família Eulophidae foram mais numerosas na soja sob sistema de plantio direto. Na soja consorciada com milho foi maior o número de insetos-pragas Megalotomus sp. e Maecolaspis sp. e dos inimigos naturais Geocoris sp., Lebia concina, Orius sp., Braconidae e Scelionidae.


Sign in / Sign up

Export Citation Format

Share Document