Short rotation forestry for land treatment of effluent: a lysimeter study

Soil Research ◽  
1999 ◽  
Vol 37 (5) ◽  
pp. 983 ◽  
Author(s):  
J. K. F. Roygard ◽  
N. S. Bolan ◽  
B. E. Clothier ◽  
S. R. Green ◽  
R. E. H. Sims

Land treatment of wastewater using short rotation forestry (SRF) has potential as a sustainable method for disposal of dairy-farm euent. We compared 3 SRF species, 2 evergreen species of eucalypts (Eucalyptus nitens, E. saligna) and a deciduous willow (Salix kinuyanagi), in the land treatment of dairy-farm euent. The trees were grown in lysimeters (1 . 8 m diameter, 1 . 0 m depth), and a bare soil treatment was used as a control. The application of dairy-farm oxidation-pond euent totalled 218 g N/lysimeter (equivalent to 870 kg N/ha) over 2 irrigation seasons (December 1995–June 1996 and September 1996–April 1997). Euent was applied weekly in summer at a rate of 18 . 9 mm/week. No euent was applied during the winter period. The evapotranspiration (ET) rates of the trees, and the volumes and nitrogen contents of the leachates are compared for a winter period (4 weeks) and a summer period (5 weeks). The biomass accumulation and the uptake of nitrogen by the 3 tree species were also investigated. The SRF trees improved the renovation levels of dairy-farm euent and produced biomass suitable for energy conversion. Of the 3 tree species, only the S. kinuyanagi treatments maintained leachate nitrate concentrations below the New Zealand drinking water standard of 11 . 3 mg NO– 3 -N/L throughout both the winter and summer periods. The E. nitens treatment produced significantly more oven-dry biomass (19 . 1 kg/tree) than the E. saligna trees (9 . 7 kg/tree) (P = 0 . 05). The S. kinuyanagi treatment had intermediate production (13 . 3 kg/tree) and was not significantly different from the other 2 tree species (P = 0 . 05). The nutrient accumulation was not significantly different among the species (P = 0 . 05). S. kinuyanagi was considered the best overall performer for the land treatment of dairy-farm euent, based on the concentrations of leachate moving beyond the root-zone.

Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1295
Author(s):  
Jason Steele ◽  
Wallace Michael Aust ◽  
John Seiler

Survival and growth of planted tree species are common indices used to evaluate success of wetland restoration efforts used to compensate for wetland losses. Restoration efforts on marginal agricultural lands have typically resulted in less than satisfactory survival and growth of desired tree species. In an attempt to determine the effects of bottomland hardwood silvicultural methods on the survival and growth of pioneer tree species, this study evaluated combinations of five mechanical site-preparation techniques (mound, bed, rip, disk, pit), four levels of planting stock (gallon, tubeling, bare root, and direct seed), and three planting aids (mat, tube, none) on the four-year survival and growth of American sycamore planted in an old field riparian area in the Piedmont of Virginia. After four growing seasons, results indicated that mounding mechanical site preparation combined with gallon (3.8 L) planting stock provided the most positive influences on mean survival (100%), height (4.72 m), and groundline diameter (9.52 cm), and resulted in the greatest aboveground dry biomass accumulation (5.44 Mg/ha/year). These treatments may be economically viable for restoration and mitigations efforts, and could offer other economic alternatives such as short-rotation woody crops, which might make restoration efforts in marginal old field areas more attractive to private landowners.


2021 ◽  
Author(s):  
Maria Paula Mendes ◽  
Ana Paula Falcão ◽  
Magda Matias ◽  
Rui Gomes

<p>Vineyards are crops whose production has a major economic impact in the Portuguese economy (~750 million euros) being exported worldwide. As the climate models project a larger variability in precipitation regime, the water requirements of vineyards can change and drip irrigation can be responsible for salt accumulation in the root zone, especially when late autumn and winter precipitation is not enough to leach salts from the soil upper horizons, turning the soil unsuitable for grape production.</p><p>The aim of this work is to present a methodology to map surface soil moisture content (SMC) in a vineyard, (40 hectares) based on the application of two classification algorithms to satellite imagery (Sentinel 1 and Sentinel 2). Two vineyard plots were considered and three field campaigns (December 2017, January 2018 and May 2018) were conducted to measure soil moisture contents (SMC). A geostatistical method was used to estimate the SM class probabilities according to a threshold value, enlarging the training set (i.e., SMC data of the two plots) for the classification algorithms. Sentinel-1 and Sentinel-2 images and terrain attributes fed the classification algorithms. Both methods, Random Forest and Logistic Regression, classified the highest SMC areas, with probabilities above 14%, located close to a stream at the lower altitudes.</p><p>RF performed very well in classifying the topsoil zones with lower SMC during the autumn-winter period (F-measure=0.82).</p><p>This delineation allows the prevention of the occurrence of areas affected by salinization, indicating which areas will need irrigation management strategies to control the salinity, especially under climate change, and the expected increase in droughts.</p>


2021 ◽  
Author(s):  
vivek pandi ◽  
Kanda Naveen Babu

Abstract The present study was carried out to analyse the leaf functional traits of co-occurring evergreen and deciduous tree species in a tropical dry scrub forest. This study also intended to check whether the species with contrasting leaf habits differ in their leaf trait plasticity, responding to the canopy-infestation by lianas. A total of 12 leaf functional traits were studied for eight tree species with contrasting leaf habits (evergreen and deciduous) and liana-colonization status (Liana+ and Liana−). In the liana-free environment (L−), evergreen trees had significantly higher specific leaf mass (LMA) and leaf dry matter content (LDMC) than the deciduous species. Whereas, the deciduous trees had higher specific leaf area (SLA) and mass-based leaf nitrogen concentration (Nmass). The leaf trait-pair relationship in the present study agreed to the well-established global trait-pair relationships (SLA Vs Nmass, Lth Vs SLA, Nmass Vs Lth, Nmass Vs LDMC, LDMC Vs SLA). There was no significant difference between L+ and L− individuals in any leaf functional traits studied in the deciduous species. However, evergreen species showed marked differences in the total chlorophyll content (Chlt), chlorophyll b (Chlb), SLA, and LMA between L+ and L− individuals of the same species. Deciduous species with the acquisitive strategy can have a competitive advantage over evergreen species in the exposed environment (L−) whereas, evergreen species with shade-tolerant properties were better acclimated to the shaded environments (L+). The result revealed the patterns of convergence and divergence in some of the leaf functional traits between evergreen and deciduous species. The results also showed the differential impact of liana colonization on the host trees with contrasting leaf habits. Therefore, liana colonization can significantly impact the C-fixation strategies of the host trees by altering their light environment. Further, the magnitude of such impact may vary among species of different leaf habits. The increased proliferation of lianas in the tropical forest canopies may pose a severe threat to the whole forest carbon assimilation rates.


2001 ◽  
Vol 30 (3) ◽  
pp. 1064-1070 ◽  
Author(s):  
Jon K.F. Roygard ◽  
Brent E. Clothier ◽  
Steve R. Green ◽  
Nanthi S. Bolan
Keyword(s):  

2014 ◽  
Vol 72 (6) ◽  
pp. 769-777 ◽  
Author(s):  
Janne Pesonen ◽  
Toivo Kuokkanen ◽  
Erik Kaipiainen ◽  
Juha Koskela ◽  
Iina Jerkku ◽  
...  

2020 ◽  
Author(s):  
Jin-Hua Qi ◽  
Ze-Xin Fan ◽  
Pei-Li Fu ◽  
Yong-Jiang Zhang ◽  
Frank Sterck

Abstract Growth rate varies across plant species and represents an important ecological strategy for competition, resource use and fitness. However, empirical studies often show a low predictability of functional traits to tree growth. We measured stem diameter and height growth rates of 96 juvenile trees (2 to 5 m tall) of eight evergreen and eight deciduous broadleaf tree species over three consecutive years in a subtropical forest in southwestern China. We examined the relationships between tree growth rates and 20 leaf/stem traits that associated with carbon gain, stem hydraulics and nutrient use efficiency, as well as the difference between evergreen and deciduous trees. We found that cross-species variations of stem diameter/height growth rate can be predicted by leaf photosynthetic capacity, leaf mass per area, xylem theoretical specific hydraulic conductivity, wood density and photosynthetic nutrient use efficiencies. Higher leaf carbon assimilation and lower leaf/stem constructing costs facilitate deciduous species to be more resource acquisitive and consequently faster growth within a relatively shorter growing season, whereas evergreen species exhibit a more conservative strategies and thus slower growth. Further, stem growth rates of evergreen species showed were more dependence on leaf carbon gains, whereas stem hydraulic efficiency were more important for deciduous tree growth. Our results suggest that physiological traits (photosynthesis, hydraulics, nutrient use efficiency) can predict tree diameter and height growth of subtropical tree species. The differential resource acquisition and use strategies and their associations with tree growth between evergreen and deciduous trees provide insights in explaining the co-existence of evergreen and deciduous tree species in subtropical forests.


Sign in / Sign up

Export Citation Format

Share Document