A model to predict the effects of prostrate ground cover on wind erosion

Soil Research ◽  
1990 ◽  
Vol 28 (4) ◽  
pp. 609 ◽  
Author(s):  
PA Findlater ◽  
DJ Carter ◽  
WD Scott

This paper presents a simple physical model which assumes that the loss of soil is proportional to the fraction of the uncovered ground, when the aerodynamic roughness is small. Integration shows that the total soil loss decreases exponentially with the fraction of ground covered. The model is compared with the soil flux generated in a portable wind tunnel over prostrate lupin residues and results from other studies. The data are well described by the model. Unexpectedly, the same data seem to predict soil fluxes that are not necessarily proportional to the cube of the excess wind speed above the threshold level.

2021 ◽  
Author(s):  
Károly Tatárvári ◽  
Attila Piros

<p>Fuzzy logic is often used for calculation and simulation of real environmental situations. Wind erosion can often be complex, and from various erosion situations it is one of the hardest to be calculated and exactly described. In our research, we based the structure of the fuzzy system on the soil loss of six soils with different mechanical compositions measured in wind channels. Measurement of soil loss in four wind speed ranges during soil channel testing of soils. During the wind tunnel analysis of the soils, the topsoil loss was measured in four wind speed ranges (I. 11,2-11,6 m/s; II. 12.5-13.3 m/s, III. 14.4-14.7 m/s, IV. 15.5-15.7 m/s) on six soils with different mechanical compositions (four sand and two clayey sand soil). The mathematical model programmed and built up in MATLAB, this mamdani type fuzzy evaluation system uses two input parameters wind speed and ErosionFactor. The mathematical model requests the soils mechanical composition and identifies it based on the USDA triangle diagram. Many mathematical methods applicable to fine tune a fuzzy system. We have chosen the method of exhaustive design to cover the whole parameter space. The mathematical model calculated the soil loss. Model runs were also performed with the SWEEP model according to the soils examined in the wind tunnel. Based on our results, we found that using our fuzzy mathematical model, we obtained estimated soil loss values similar to the SWEEP model compared to the soil loss measured in the wind tunnel. However, it should be noted that the USDA SWEEP model requires a much larger amount of data to estimate the extent of soil loss caused by a wind erosion damage event.</p>


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244213
Author(s):  
Xia Pan ◽  
Zhenyi Wang ◽  
Yong Gao ◽  
Zhengcai Zhang ◽  
Zhongjv Meng ◽  
...  

Wind erosion has gained increasing attention as one of the most serious global ecological and environmental threats. Windbreaks are effective at decreasing wind erosion by reducing wind speed to protect crops, livestock, and farmsteads, while providing wildlife habitats. Synthetic shrubs can act as novel windbreaks; however, there is limited knowledge on how their design affects wind speed. This study determined the protective effects (airflow field and sheltering efficiency) based on the design of synthetic shrubs in a wind tunnel. Broom-shaped synthetic shrubs weakened the wind speeds mainly at the middle and upper parts of the shrubs (5–14 cm), while for hemisphere-shaped shrubs this effect was greatest near their bases (below 4 cm) and least in the middle and upper parts (7–14 cm). Spindle-shaped synthetic shrubs provided the best reduction effect in wind range and strength. Moreover, the wind speed reduction ratio decreased with improved wind speeds and ranged from 26.25 cm (between the second and third rows) to 52.5 cm (after the third row). These results provide strong evidence that synthetic shrubs should be considered to decrease wind speed and prevent wind erosion.


2002 ◽  
Vol 82 (1) ◽  
pp. 85-95 ◽  
Author(s):  
Daniel R. Campbell ◽  
Claude Lavoie ◽  
Line Rochefort

Peatlands exploited for their peat by the method of milling are poorly recolonized by plants after the cessation of extraction activities, in part due to unstable peat substrates. Wind erosion has been suspected to play a role in this instability. Four studies were conducted to investigate the role of wind erosion on abandoned milled peatlands. A wind tunnel experiment was performed to evaluate the erodibility of dry, loose peat as a function of its degree of decomposition. A second wind tunnel experiment was conducted to determine how crusted peats differ in their resistance to erosion as a function of their degree of decomposition, without the input of abraders. Third, wind profiles were measured in milled, revegetated and natural peatlands in southeastern Québec to determine their aerodynamic roughness length. Finally, field measurements were made at three abandoned milled peatlands through two field seasons to characterize substrate stability and particle movement. In the wind tunnel, the erodibility of loose surface peat decreased with increasing decomposition and was predicted by their equivalent diameter to mineral particles 0.84 mm in diameter. However, once surface crusts formed, peats were all resistant to erosion. Surfaces of abandoned milled peatlands were aerodynamically smooth; therefore, exposed surface elements are subject to strong erosive forces during wind events. The greatest subsidence on abandoned milled peatlands occurred in the spring, prior to the surface movement of particles. Erosion during the summer could not be clearly detected. The instability of the peat surface remains a constraint for the restoration of abandoned milled surfaces. Key Words: Peat, cutover peatland, wind erosion, soil crust, roughness length, soil stability


2021 ◽  
Vol 9 ◽  
Author(s):  
Qiang Li ◽  
Furen Kang ◽  
Zheng Zhang ◽  
Chunyan Ma ◽  
Weige Nan

Plant residual is of great importance in retarding soil wind erosion in the agro-pastoral ecotone. However, few studies have determined the effects of sand plant residual on wind erosion resistance. Based on field surveys, the influences of Salix residual biomass of 200, 400, 600, and 800 g m−2, soil incorporated with a residual thickness of 0.5, 1.0, and 2.0 cm, and typical proportion of residual branches and leaves (2:1, 1:1, and 1:2) on wind erosion resistance were investigated using a simulated wind tunnel. The results showed the following: 1) The soil loss amount ranged from 1.56 to 40.8 kg m−2 as Salix residual biomass decreased from 800 to 0 g m−2, with a critical residual biomass value of 400 g m−2. 2) As the thickness of soil-incorporated residual increased, the soil loss amount reduced rapidly, especially for 0–9 cm above the surface accounting for 84.6% of the total. 3) Salix branch residual is more important in resisting soil wind erosion as compared with its leaves. This kind of study may provide theoretical explanations for the optimal reconstruction of sandy vegetation in the northern wind-sand regions.


2013 ◽  
Vol 114 ◽  
pp. 81-93 ◽  
Author(s):  
Ming-Yi Yang ◽  
Des E. Walling ◽  
Xi-Jun Sun ◽  
Feng-Bao Zhang ◽  
Bo Zhang

2012 ◽  
Vol 518-523 ◽  
pp. 4766-4770
Author(s):  
Lan Gao ◽  
Yu Jun Qiu ◽  
Xue Yong Zou ◽  
Ren De Wang ◽  
Na Zhou

The characteristics of soil erosion of steppe in Inner Mongolia were studied in wind-tunnel tests. The results indicated that the soil in this region consists primarily of sand and coarse silt, with particle sizes mainly between 0.02 and 1mm, and it is defined as erodible sandy soil. The eroded sediments are mainly concentrated at heights of 0~24cm, and the extreme value of particle size is clearly in the range 100~300μm. Average particle size increased with increasing wind speed, and it decreased exponentially in the vertical direction, reflecting the characteristics of sand transport by wind. The relationship between wind erosion rate and wind speed assumes a power function with correlation coefficients greater than 0.9. A wind speed of 15m/s is a significance point above which wind erosion in this region becomes very large. Soil erosion rate decreases logarithmically as soil moisture content and vegetation coverage increase, and the 5% level of moisture content is a turning point.


2011 ◽  
Vol 60 (1) ◽  
pp. 87-102 ◽  
Author(s):  
Andrea Farsang ◽  
József Szatmári ◽  
Gábor Négyesi ◽  
Máté Bartus ◽  
Károly Barta

Összefoglalva megállapítható, hogy nagyobb szélsebesség hatására több talajanyag erodálódott, és ezzel együtt megnőtt az áthalmozott tápanyag mennyisége is. Minden vizsgált szélsebesség esetében a szélerózió következtében 3–7%-kal megnőtt az 1 mm és annál nagyobb szemcsék, illetve aggregátumok aránya a kiindulási talajanyag felső 0–1 cm-es rétegében. A finomabb szemcse-, illetve aggregátum-átmérők esetén a fújatást követően csökkenést tapasztaltunk. A leginkább a 315 μm és az annál kisebb szemcsék aránya csökkent, átlagosan 1–2%-kal. A minták kémiai és fizikai elemzéseiből megállapítható, hogy a láda utáni humuszosabb, aggregátumosabb szerkezetű minták N-tartalma nagyobb, mint az alapmintáé. A fogók mintáiban nem tapasztaltunk feldúsulást egy vizsgált elem esetében sem, a fogókban összegyűlt talajanyag kálium- és foszfortartalma is kisebb volt, mint az alapmintáé. Ennek oka, hogy az itt csapdázódott üledékben kisebb a tápanyag-megkötődés helyéül szolgáló leiszapolható rész aránya, mint a kiindulási talajanyagban. A vizsgálatainkból látszik, hogy a szélerózió hatására a lebegtetve, illetve ugráltatva áthalmozott talajszemcsékkel és aggregátumokkal szállított humusz 500–3500 kg/ha nagyságrendben mozoghat a vizsgált csernozjom területen akár egyetlen szélesemény hatására is. A kálium-áthalmozódás mértéke elérheti a 100 kg/ha értéket, a foszforé a 70 kg/ha-t, a nitrogénveszteség mértéke pedig akár 200–300 kg/ha is lehet egy szélesemény alkalmával. E tápanyagmennyiség nagy része több száz méter, de akár kilométeres távolságokra is távozhat a területről. Az általunk végzett szélcsatornás vizsgálatok eredményei becslésnek tekinthetők, hiszen vizsgálatunk során növénymaradvány-mentes, szitált és légszáraz talajanyaggal dolgoztunk. A szitálás eredményeként csupán a 2 mm-es és annál kisebb aggregátumok maradtak meg, ami azonban az intenzív művelés alá vont, porosodott, leromlott szerkezetű talajfelszín körülményeit jól közelíti. Ugyanakkor a természetben zajló széleróziós eseményeknek a szélcsatorna-kísérlet csak leegyszerűsített modellváltozata, hiszen az általunk szimulált szélesemények 15 percig tartottak, s nem tudtunk széllökéseket előállítani, melyek a széleróziós események alakulásában nagy jelentőségűek. Ennek tudatában kell a kapott eredményeket értékelni, mégis érdemes velük foglalkozni. A terepi mérésekkel szemben a szélcsatornában végzett vizsgálatoknak éppen az a legfontosabb előnye, hogy ellenőrzött, kontrollált körülmények között végezzük a méréseket, így rengeteg olyan szempontot meg tudunk vizsgálni, amit terepi mérésekkel lehetetlen lenne. Ilyen szempontok a pontos szélsebesség és szélirány hatása, az erodált felület nagysága és tulajdonságai. Kutatásunk következő lépése a szélcsatornás kísérletekkel vizsgált mintaterületeken terepi, mobil szélcsatornás vizsgálatok végzése, valamint terepi üledékcsapdák elhelyezésével a valós szélesemények által elszállított talaj mennyiségének és minőségének meghatározása. Célunk mind pontosabb képet alkotni a hazai jó minőségű csernozjom talajok szélerózió okozta tápanyagveszteségének mértékéről. A mezőgazdasági művelés alatt álló csernozjom területek feltalajában a tápanyag és szerves anyag szélerózió útján történő mozgási törvényszerűségeinek feltárása több szempontból is hasznos: segítséget jelent a területi tervezésben, a defláció szempontjából optimális területhasználat és művelési módok meghatározásában. Képet kapunk arról, hogy a legnagyobb gazdasági potenciállal rendelkező termőtalajunk milyen veszélyeknek van kitéve, s hogy a nem megfelelő időben, nem megfelelő nedvességviszonyok mellett történő talajművelés következtében kialakuló szerkezetromlás (porosodás) miatti deflációs károk milyen tápanyagveszteséggel járhatnak együtt.


Author(s):  
Junji Maeda ◽  
Takashi Takeuchi ◽  
Eriko Tomokiyo ◽  
Yukio Tamura

To quantitatively investigate a gusty wind from the viewpoint of aerodynamic forces, a wind tunnel that can control the rise time of a step-function-like gust was devised and utilized. When the non-dimensional rise time, which is calculated using the rise time of the gusty wind, the wind speed, and the size of an object, is less than a certain value, the wind force is greater than under the corresponding steady wind. Therefore, this wind force is called the “overshoot wind force” for objects the size of orbital vehicles in an actual wind observation. The finding of the overshoot wind force requires a condition of the wind speed recording specification and depends on the object size and the gusty wind speed.


2021 ◽  
Vol 127 ◽  
pp. 107599
Author(s):  
Hanbing Zhang ◽  
Jian Peng ◽  
Chaonan Zhao ◽  
Zihan Xu ◽  
Jianquan Dong ◽  
...  

2007 ◽  
Vol 94 (2) ◽  
pp. 269-282 ◽  
Author(s):  
C ZHANG ◽  
X ZOU ◽  
P YANG ◽  
Y DONG ◽  
S LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document