Soil structure and carbon cycling

Soil Research ◽  
1994 ◽  
Vol 32 (5) ◽  
pp. 1043 ◽  
Author(s):  
A Golchin ◽  
JM Oades ◽  
JO Skjemstad ◽  
P Clarke

Samples from the surface horizons of six virgin soils were collected and separated into density fractions. Based on the spatial distribution of organic materials within the mineral matrix of soil, the soil organic matter (SOM) contained in various density fractions was classified as: (a) free particulate OM, (b) occluded particulate OM, and (c) colloidal or clay-associated OM. The compositional differences noted among these three components of SOM were used to describe the changes that OM undergoes during decomposition when it enters the soil, is enveloped in aggregates and eventually is incorporated into microbial biomass and metabolites and associated with clay minerals. The occluded organic materials, released as a result of aggregate disruption, were in various stages of decomposition and had different degrees of association with mineral particles. Changes in the degree of association of occluded organic materials and mineral particles with decomposition are discussed and form the basis of a model which illustrates the simultaneous dynamics of microaggregates and their organic cores. This model indicates a major role for carbohydrate-rich plant debris in formation and stabilization of microaggregates.

Soil Research ◽  
1988 ◽  
Vol 26 (2) ◽  
pp. 289 ◽  
Author(s):  
JM Oades ◽  
AG Waters ◽  
AM Vassallo ◽  
MA Wilson ◽  
GP Jones

Samples were obtained from the same red-brown earth: (a) in an undisturbed state, (b) after 60 years of an exploitive wheat-fallow rotation and (c) after 40 years under a fertilized mixed grass-legume pasture. Organic materials were concentrated in various fractions which enabled comparative chemical composition of the organic materials in the three soils by 13C CPMAS n.m.r. spectroscopy. Despite more than twofold differences in the organic carbon content of the soils, the chemistry of the organic matter in the soils was similar, particularly organic matter associated with clay fractions. Most of the differences detected were associated with plant debris in particles > 20 �m which contained most of the aromatic carbon. The results indicate a rapid disappearance of phenolic-carbon which originates in lignins. The composition of sodium hydroxide extracts reflects quite well the composition of the organic matter in the soil. It is concluded that in a particular soil type, changes in amounts and nature of added photosynthate do not change the composition of the organic matter which is controlled by the microbial biomass and interactions of the biomass and its decomposition products with the soil matrix. Implications of this conclusion for the turnover of organic carbon in soil and stability of soil structure are discussed.


Soil Research ◽  
1995 ◽  
Vol 33 (1) ◽  
pp. 59 ◽  
Author(s):  
A Golchin ◽  
JM Oades ◽  
JO Skjemstad ◽  
P Clarke

Changes in the content and isotopic composition of organic carbon as a consequence of deforestation and pasture establishment were studied in three neighbouring areas on an Oxisol from Australia and used to measure the turnover of forest-derived carbon (C3) under pasture (C4) over 35 and 83 year time scales. The results indicated that the quantity of forest-derived carbon declined rapidly during the first 35 years under pasture but the content remained nearly stable thereafter, suggesting the presence of two pools of carbon with different turnover times. The calculated values for turnover time of labile and resistant fractions of forest-derived carbon were 35 and 144 years respectively. The soil samples were separated into five fractions with densities <1.6 (free and occluded), 1.6-1.8, 1.8-2.0 and >2.0 Mg m-3. Based on the spatial distribution of organic materials within the mineral matrix of soil, the soil organic matter contained in different density fractions was classified as free particulate organic matter (1.6 free), occluded particulate organic matter (<1.6 occluded, 1.6-1.8 and 1.8-2.0) and clay associated organic matter (>2.0 Mg m-3). The 13C natural abundance showed that the free particulate organic matter formed a significant pool for soil organic matter turnover when the forest was replaced by pasture. Compared with free particulate organic matter, the organic materials occluded within aggregates had slower turnover times. The occluded organic materials were in different stages of decomposition and had different chemical stabilities. Comparison of the chemistry and isotopic composition of occluded organic materials indicated that the O-alkyl C content of the occluded organic materials was inversely related to their stabilities whereas their aromatic C content was directly related to their stabilities. In soils under pasture, a considerable amount of forest-derived carbon was associated with clay particles in the fractions .2.0 Mg m-3. The rate of accumulation of pasture-derived carbon was also rapid in this fraction, indicating the presence of two different pools of carbon (C3 and C4) associated with clay particles. The forest-derived carbon had the highest stability in the fractions >2.0 Mg m-3, probably due to strong interaction with active aluminium or iron and aluminium oxides associated with clay surfaces.


2020 ◽  
Author(s):  
Fabrizio De Cesare ◽  
Elena Di Mattia ◽  
Antonella Macagnano

&lt;p&gt;Soil structure is the organisation of soil particles in aggregates with increasing hierarchical levels, from nano- to macro-architectures. Several processes and the functioning of the entire soil ecosystem fundamentally depends on soil structure. Soil is also a very heterogeneous and complex matrix to study because of several components with different nature (mineral, organic and biological), physics and chemistry comprise it. Its study often involves techniques that profoundly alter its natural composition or destroy its original 3D arrangement, including the pore distribution and organisation, which is crucial in preserving a suitable habitat for soil ecology and functioning.&lt;/p&gt;&lt;p&gt;Microbial life has been discovered in the last decades to exist in biofilms, 3D spatial organisations of microbial communities adhering to solid surfaces. In these well-organised assemblages of one or more different microbial species, extracellular polymeric substances (EPS) play remarkable functions for microorganisms in biofilms and facilitate aggregation of soil particles.&lt;/p&gt;&lt;p&gt;As a model system, a self-standing polymer biodegradable nanostructured scaffolds (NS) composed of a mixture of nano- to microfibres and microbeads mimicking the fibrous materials and particles comprising the main morphological types of soil (organic matter and mineral particles) and the relative spatial architecture at the micro- and nanoscale were created by electrospinning. Electrospinning is a nanotechnology producing 2D and 3D nano- and microfibrous scaffolds under an electric field. The resulting NS were characterised by considerable porosity and extensive surface area. A PGPR species was employed as a model microbial type to test the capacity of similar NS of supporting the biofilm development. Incubation was performed under stirring to stimulate only stable interactions between microorganisms and the various morphological types of the NS, and also to assess the stability of the NS mimicking the soil aggregates. To shed some light into the nexus between microorganisms and soil structure and the reciprocal influence, combination of imaging techniques such as optical, SEM and TEM microscopy were used to observe &amp;#8220;in situ&amp;#8221; associations of microbes with mineral and organic materials at nano- and microscale and the consequent effects on porosity usually destroyed under investigations.&lt;/p&gt;&lt;p&gt;The typical phases of conditioning film release, initial and stable adhesion mediated by appendages and EPS release, micro- and macrocolony formation until a mature biofilm development were observed. Morphological modifications of bacteria and the involvement of other components in the mentioned stages were also detected. The bacteria growth rate, the overall respiratory activity and its spatial distribution throughout the NS were recorded.&lt;/p&gt;&lt;p&gt;Hence, the tools here proposed can have high potentials in reproducing the spatial and temporal dynamics of microbial hotspots of activity typically present in the rhizosphere, the sphere of soil surrounding roots, which is of central importance for the entire soil ecosystem functioning.&lt;span&gt;&amp;#160;&lt;/span&gt;&lt;/p&gt;&lt;p&gt;Similar 3D NS can also provide the opportunity of zooming in microbial lifestyle observing microbes at work, from the dynamics of interactions with organic matter and particle surfaces to their spatial distribution and colony formation, then linking biological processes to specific physical and chemical features of soil at different scales (from nm to mm).&lt;/p&gt;


2016 ◽  
Author(s):  
Stephan John ◽  
Gerrit Angst ◽  
Kristina Kirfel ◽  
Sebastian Preusser ◽  
Carsten W. Mueller ◽  
...  

Abstract. Radiocarbon (14C) analysis is an important tool that can provide information on the dynamics of organic matter in soils. Radiocarbon concentrations of soil organic matter (SOM) however, reflect the heterogeneous mixture of various organic compounds and are affected by different chemical, biological, and physical soil parameters. These parameters can vary strongly in soil profiles and thus affect the spatial distribution of the apparent 14C age of SOM considerably. The heterogeneity of SOM and its 14C signature may be even larger in subsoil horizons, which are thought to receive organic carbon inputs following preferential pathways. This will bias conclusions drawn from 14C analyses of individual soil profiles considerably. We thus investigated important soil parameters, which may influence the 14C distribution of SOM as well as the spatial heterogeneity of 14C distributions in soil profiles. The suspected strong heterogeneity and spatial variability, respectively of bulk SOM is confirmed by the variable 14C distribution in three 185 cm deep profiles in a Dystric Cambisol. The 14C contents are most variable in the C horizons because of large differences in the abundance of roots there. The distribution of root biomass and necromass and its organic carbon input is the most important factor affecting the 14C distribution of bulk SOM. The distance of the soil profiles to a beech did not influence the horizontal and vertical distribution of roots and 14C concentrations. Other parameters were found to be of minor importance including microbial biomass-derived carbon and soil texture. The microbial biomass however, may promote a faster turnover of SOM at hot spots resulting in lower 14C concentration there. Soil texture had no statistically significant influence on the spatial 14C distribution of bulk SOM. However, SOM in fine silt and clay sized particles (< 6.3 µm) yields slightly higher 14C concentrations than bulk SOM particularly at greater soil depth, which is in contrast to previous studies where silt and clay fractions contained older SOM stabilized by organo-mineral interaction. 14C contents of fine silt and clay correlate with the microbial biomass-derived carbon suggesting a considerable contribution of microbial-derived organic carbon. In conclusion, 14C analyses of bulk SOM mainly reflect the spatial distribution of roots, which is strongly variable even on a small spatial scale of few meters. This finding should be considered when using 14C analysis to determine SOM.


2017 ◽  
Vol 241 ◽  
pp. 79-87 ◽  
Author(s):  
Dennis Grunwald ◽  
Michael Kaiser ◽  
Simone Junker ◽  
Sven Marhan ◽  
Hans-Peter Piepho ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1386
Author(s):  
Michael Stotter ◽  
Florian Wichern ◽  
Ralf Pude ◽  
Martin Hamer

Cultivation of Miscanthus x giganteus L. (Mis) with annual harvest of biomass could provide an additional C source for farmers. To test the potential of Mis-C for immobilizing inorganic N from slurry or manure and as a C source for soil organic matter build-up in comparison to wheat (Triticum aestivum L.) straw (WS), a greenhouse experiment was performed. Pot experiments with ryegrass (Lolium perenne L.) were set up to investigate the N dynamics of two organic fertilisers based on Mis at Campus Klein-Altendorf, Germany. The two fertilisers, a mixture of cattle slurry and Mis as well as cattle manure from Mis-bedding material resulted in a slightly higher N immobilisation. Especially at the 1st and 2nd harvest, they were partly significantly different compared with the WS treatments. The fertilisers based on Mis resulted in a slightly higher microbial biomass C and microbial biomass N and thus can be identified as an additional C source to prevent nitrogen losses and for the build-up of soil organic matter (SOM) in the long-term.


1993 ◽  
Vol 73 (1) ◽  
pp. 39-50 ◽  
Author(s):  
D. A. Angers ◽  
N. Bissonnette ◽  
A. Légère ◽  
N. Samson

Crop rotations and tillage practices can modify not only the total amount of organic matter (OM) in soils but also its composition. The objective of this study was to determine the changes in total organic C, microbial biomass C (MBC), carbohydrates and alkaline phosphatase activity induced by 4 yr of different rotation and tillage combinations on a Kamouraska clay in La Pocatière, Quebec. Two rotations (continuous barley (Hordeum vulgare L.) versus a 2-yr barley–red clover (Trifolium pratense L.) rotation) and three tillage treatments (moldboard plowing (MP), chisel plowing (CP) and no-tillage (NT)) were compared in a split-plot design. Total organic C was affected by the tillage treatments but not by the rotations. In the top soil layer (0–7.5 cm), NT and CP treatments had C contents 20% higher than the MP treatment. In the same soil layer, MBC averaged 300 mg C kg−1 in the MP treatment and up to 600 mg C kg−1 in the NT soil. Hot-water-extractable and acid-hydrolyzable carbohydrates were on average 40% greater under reduced tillage than under MP. Both carbohydrate fractions were also slightly larger in the rotation than in the soil under continuous barley. The ratios of MBC and carbohydrate C to total organic C suggested that there was a significant enrichment of the OM in labile forms as tillage intensity was reduced. Alkaline phosphatase activity was 50% higher under NT and 20% higher under CP treatments than under MP treatment and, on average, 15% larger in the rotation than in the continuous barley treatment. Overall, the management-induced differences were slightly greater in the top layer (0–7.5 cm) than in the lower layer of the Ap horizon (7.5–15 cm). All the properties measured were highly correlated with one another. They also showed significant temporal variations that were, in most cases, independent of the treatments. Four years of conservation tillage and, to a lesser extent, rotation with red clover resulted in greater OM in the top soil layer compared with the more intensive systems. This organic matter was enriched in labile forms. Key words: Soil management, soil quality, organic matter, carbohydrates, microbial biomass, phosphatase


1986 ◽  
Vol 66 (2) ◽  
pp. 273-285 ◽  
Author(s):  
J. F. DORMAAR ◽  
C. W. LINDWALL ◽  
G. C. KOZUB

A field was artificially eroded by levelling in 1957 and then continuously cropped to barley for 7 yr. Subsequently, a wheat-fallow experiment was conducted from 1965 to 1979 to determine the effects of four fertilizer treatments and green manure (yellow sweet clover) on restoring the productivity to soil that had been "eroded" to various depths. After 22 yr and 14 crops, the productivity of the land from which soil was removed has been improved but not fully restored. Although green manuring with yellow sweet clover improved soil structure, wheat yields were not improved because of competition for soil moisture and poorer in-crop weed control in this part of the rotation. The addition of 45 kg N plus 90 kg P2O5 per hectare in each crop year to sites from which 8–10, 10–20, or 46 + cm of soil had been removed resulted in yield increases of 18, 46, and 70%, respectively, over the unfertilized check of each treatment; the average yields were 104, 91, and 70%, respectively, of the undisturbed, unfertilized (check) treatment. On "erosion" treatments where only 8–10 cm of soil were removed, 45 kg N plus 22 kg P2O5 per hectare were sufficient to restore the productivity. Precipitation apparently had a greater effect than fertilizer application on wheat yields. The loss of organic matter and associated soil structure characteristics seemed to be critical factors contributing to yield losses associated with soil erosion. These results show that it is more practical to use management practices that prevent soil erosion than to adopt the practices required to restore eroded soil. Key words: Soil erosion, topsoil loss, water-stable aggregates, soil organic matter, green manure, precipitation


Fuel ◽  
2015 ◽  
Vol 139 ◽  
pp. 502-510 ◽  
Author(s):  
Chao Fan ◽  
Junwei Yan ◽  
Yiru Huang ◽  
Xiangxin Han ◽  
Xiumin Jiang

Sign in / Sign up

Export Citation Format

Share Document