Influence of management on the composition of organic matter in a red-brown earth as shown by 13C nuclear magnetic resonance

Soil Research ◽  
1988 ◽  
Vol 26 (2) ◽  
pp. 289 ◽  
Author(s):  
JM Oades ◽  
AG Waters ◽  
AM Vassallo ◽  
MA Wilson ◽  
GP Jones

Samples were obtained from the same red-brown earth: (a) in an undisturbed state, (b) after 60 years of an exploitive wheat-fallow rotation and (c) after 40 years under a fertilized mixed grass-legume pasture. Organic materials were concentrated in various fractions which enabled comparative chemical composition of the organic materials in the three soils by 13C CPMAS n.m.r. spectroscopy. Despite more than twofold differences in the organic carbon content of the soils, the chemistry of the organic matter in the soils was similar, particularly organic matter associated with clay fractions. Most of the differences detected were associated with plant debris in particles > 20 �m which contained most of the aromatic carbon. The results indicate a rapid disappearance of phenolic-carbon which originates in lignins. The composition of sodium hydroxide extracts reflects quite well the composition of the organic matter in the soil. It is concluded that in a particular soil type, changes in amounts and nature of added photosynthate do not change the composition of the organic matter which is controlled by the microbial biomass and interactions of the biomass and its decomposition products with the soil matrix. Implications of this conclusion for the turnover of organic carbon in soil and stability of soil structure are discussed.

2009 ◽  
Vol 13 (8) ◽  
pp. 1485-1502 ◽  
Author(s):  
L. W. de Jonge ◽  
P. Moldrup ◽  
P. Schjønning

Abstract. Soil functions and their impact on health, economy, and the environment are evident at the macro scale but determined at the micro scale, based on interactions between soil micro-architecture and the transport and transformation processes occurring in the soil infrastructure comprising pore and particle networks and at their interfaces. Soil structure formation and its resilience to disturbance are highly dynamic features affected by management (energy input), moisture (matric potential), and solids composition and complexation (organic matter and clay interactions). In this paper we review and put into perspective preliminary results of the newly started research program "Soil-it-is" on functional soil architecture. To identify and quantify biophysical constraints on soil structure changes and resilience, we claim that new approaches are needed to better interpret processes and parameters measured at the bulk soil scale and their links to the seemingly chaotic soil inner space behavior at the micro scale. As a first step, we revisit the soil matrix (solids phase) and pore system (water and air phases), constituting the complementary and interactive networks of soil infrastructure. For a field-pair with contrasting soil management, we suggest new ways of data analysis on measured soil-gas transport parameters at different moisture conditions to evaluate controls of soil matrix and pore network formation. Results imply that some soils form sponge-like pore networks (mostly healthy soils in terms of agricultural and environmental functions), while other soils form pipe-like structures (agriculturally poorly functioning soils), with the difference related to both complexation of organic matter and degradation of soil structure. The recently presented Dexter et al. (2008) threshold (ratio of clay to organic carbon of 10 kg kg−1) is found to be a promising constraint for a soil's ability to maintain or regenerate functional structure. Next, we show the Dexter et al. (2008) threshold may also apply to hydrological and physical-chemical interface phenomena including soil-water repellency and sorption of volatile organic vapors (gas-water-solids interfaces) as well as polycyclic aromatic hydrocarbons (water-solids interfaces). However, data for differently-managed soils imply that energy input, soil-moisture status, and vegetation (quality of eluded organic matter) may be equally important constraints together with the complexation and degradation of organic carbon in deciding functional soil architecture and interface processes. Finally, we envision a road map to soil inner space where we search for the main controls of particle and pore network changes and structure build-up and resilience at each crossroad of biophysical parameters, where, for example, complexation between organic matter and clay, and moisture-induced changes from hydrophilic to hydrophobic surface conditions can play a role. We hypothesize that each crossroad (e.g. between organic carbon/clay ratio and matric potential) may control how soil self-organization will manifest itself at a given time as affected by gradients in energy and moisture from soil use and climate. The road map may serve as inspiration for renewed and multi-disciplinary focus on functional soil architecture.


2009 ◽  
Vol 6 (2) ◽  
pp. 2633-2678 ◽  
Author(s):  
L. W. de Jonge ◽  
P. Moldrup ◽  
P. Schjønning

Abstract. Soil functions and their impact on health, economy and the environment are evident at the macro scale but determined at the micro scale, based on interactions between soil micro-architecture and the transport and transformation processes occurring in the pore and particle networks and at their interfaces. Soil structure formation and its resilience to disturbance are highly dynamic features affected by management (energy input), moisture (matric potential), and solids composition and complexation (organic carbon, OC, and clay interactions). In this paper we review and put into perspective preliminary results of the newly started research program ''Soil-it-is'' on functional soil architecture. To identify and quantify biophysical constraints on soil structure changes and resilience, we claim that new paradigms are needed to better interpret processes and parameters measured at the bulk soil scale and their links to the seemingly chaotic soil inner space behavior at the micro scale (soil self-organization). As a first step, we revisit the soil matrix (solids phase) and pore system (water and air phases), constituting the complementary and interactive networks of soil infrastructure. For a field-pair with contrasting soil management, we suggest new ways of data analysis on measured soil-gas transport parameters at different moisture conditions to evaluate controls of soil matrix and pore network formation. Results imply that some soils form sponge-like pore networks (mostly healthy soils in terms of environmental functions), while other soils form pipe-like structures (poorly functioning soils), with the difference related to both complexation of organic matter and degradation of soil structure. The recently presented Dexter threshold (ratio of clay to organic carbon of 10 g g−1) is found to be a promising constraint for a soil's ability to maintain or regenerate functional structure. Next, we show the Dexter threshold may also apply to hydrological and physical-chemical interface phenomena including soil-water repellency and sorption of volatile organic vapors (gas-water-solids interfaces) as well as polycyclic aromatic hydrocarbons (water-solids interfaces). However, data for differently-managed soils imply that energy input, soil-moisture status, and vegetation (quality of eluded organic matter) may be equally important constraints together with the complexation and degradation of organic carbon in deciding functional soil architecture and interface processes. Finally, we envision a road map to soil inner space where we search for the main controls of particle and pore network changes and structure build-up and resilience at each crossroad of biophysical parameters, where, for example, complexation between organic matter and clay, and moisture-induced changes from hydrophilic to hydrophobic surface conditions can play a role. We hypothesize that each crossroad (e.g. between OC/clay ratio and matric potential) may initiate breakdown or activation of soil self-organization at a given time as affected by gradients in energy and moisture from soil use and climate. The road map may serve as inspiration for renewed and multi-disciplinary focus on functional soil architecture.


Soil Research ◽  
1994 ◽  
Vol 32 (5) ◽  
pp. 1043 ◽  
Author(s):  
A Golchin ◽  
JM Oades ◽  
JO Skjemstad ◽  
P Clarke

Samples from the surface horizons of six virgin soils were collected and separated into density fractions. Based on the spatial distribution of organic materials within the mineral matrix of soil, the soil organic matter (SOM) contained in various density fractions was classified as: (a) free particulate OM, (b) occluded particulate OM, and (c) colloidal or clay-associated OM. The compositional differences noted among these three components of SOM were used to describe the changes that OM undergoes during decomposition when it enters the soil, is enveloped in aggregates and eventually is incorporated into microbial biomass and metabolites and associated with clay minerals. The occluded organic materials, released as a result of aggregate disruption, were in various stages of decomposition and had different degrees of association with mineral particles. Changes in the degree of association of occluded organic materials and mineral particles with decomposition are discussed and form the basis of a model which illustrates the simultaneous dynamics of microaggregates and their organic cores. This model indicates a major role for carbohydrate-rich plant debris in formation and stabilization of microaggregates.


2021 ◽  
Author(s):  
Kristina Witzgall ◽  
Alix Vidal ◽  
David Schubert ◽  
Carmen Höschen ◽  
Steffen Schweizer ◽  
...  

Abstract The largest terrestrial organic carbon pool, carbon in soils, is regulated by the intricate connection between plant carbon inputs, microbial activity, and soil matrix. This is manifested by how microorganisms, the key players in transforming plant-derived carbon into soil organic carbon, are controlled by the physical arrangement of organic and inorganic soil particles. We studied the role of soil structure on the fate of litter-derived organic matter and we propose that the persistence of soil carbon pools is directly determined at plant–soil interfaces. We show that while microbial activity and fungal growth is controlled by soil structure, occlusion of organic matter into aggregates and formation of organo-mineral associations occur in concert on litter surfaces regardless of soil structure. These two mechanisms—the two most prominent processes contributing to the persistence of organic matter—occur directly at fresh litter that constitutes a key nucleus in the build-up of soil carbon persistence.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kristina Witzgall ◽  
Alix Vidal ◽  
David I. Schubert ◽  
Carmen Höschen ◽  
Steffen A. Schweizer ◽  
...  

AbstractThe largest terrestrial organic carbon pool, carbon in soils, is regulated by an intricate connection between plant carbon inputs, microbial activity, and the soil matrix. This is manifested by how microorganisms, the key players in transforming plant-derived carbon into soil organic carbon, are controlled by the physical arrangement of organic and inorganic soil particles. Here we conduct an incubation of isotopically labelled litter to study effects of soil structure on the fate of litter-derived organic matter. While microbial activity and fungal growth is enhanced in the coarser-textured soil, we show that occlusion of organic matter into aggregates and formation of organo-mineral associations occur concurrently on fresh litter surfaces regardless of soil structure. These two mechanisms—the two most prominent processes contributing to the persistence of organic matter—occur directly at plant–soil interfaces, where surfaces of litter constitute a nucleus in the build-up of soil carbon persistence. We extend the notion of plant litter, i.e., particulate organic matter, from solely an easily available and labile carbon substrate, to a functional component at which persistence of soil carbon is directly determined.


2019 ◽  
Vol 37 (3) ◽  
pp. 263-273
Author(s):  
Efraín Francisco Visconti-Moreno ◽  
Ibonne Geaneth Valenzuela-Balcázar

The stability of soil aggregates depends on the organic matter, and the soil use and management can affect the soil organicmatter (SOM) content. Therefore, it is necessary to know therelationship between aggregate stability and the content of SOMin different types of soil use at two different altitudes of theColombian Andes. This study examined the conditions of soilaggregate stability expressed as a distribution of the size classes of stable aggregates (SA) and of the mean weighted diameter of the stable aggregates (MWD). To correlate these characteristics with the soil organic carbon (OC), we measured the particulate organic matter pool (POC), the OC associated with the mineral organic matter pool (HOC), the total organic carbon content (TOC), and the humification rate (HR). Soils were sampled at two altitudes: 1) Humic Dystrudepts in a cold tropical climate (CC) with three plots: tropical mountain rainforest, pastures, and crops; 2) Fluvaquentic Dystrudepts in a warm tropical climate (WC) with three plots: tropical rainforest, an association of oil palm and pastures, and irrigated rice. Soils were sampled at three depths: 0-5, 5-10 and 10-20 cm. The physical properties, mineral particle size distribution, and bulk density were measured. The content of SA with size>2.36 mm was higher in the CC soil (51.48%) than in the WC soil (9.23%). The SA with size 1.18-2.36 mm was also higher in the CC soil (7.78%) than in the WC soil (0.62%). The SA with size 0.60-1.18 mm resulted indifferent. The SA with size between 0.30 and 0.60 mm were higher in the WC soil (13.95%) than in the CC soil (4.67%). The SA<0.30 mm was higher in the WC soil (72.56%) than in the CC soil (32.15%). It was observed that MWD and the SA>2.36 mm increased linearly with a higher POC, but decreased linearly with a higher HR. For the SA<0.30 mm, a linear decrease was observed at a higher POC, while it increased at a higher HR.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2249
Author(s):  
Nikolett Uzinger ◽  
Orsolya Szécsy ◽  
Nóra Szűcs-Vásárhelyi ◽  
István Padra ◽  
Dániel Benjámin Sándor ◽  
...  

Organic waste and the compost and vermicompost derived from it may have different agronomic values, but little work is available on this aspect of sewage sludge. A 75-day pot experiment with perennial ryegrass (Lolium perenne) as the test plant aimed to investigate the fertiliser value and organic matter replenishment capacity of digested sewage sludge (DS) and the compost (COM) and vermicompost (VC) made from it, applied in 1% and 3% doses on acidic sand and calcareous loam. The NPK content and availability, changes in organic carbon content and plant biomass, and the efficiency of the amendments as nitrogen fertilisers were investigated. The final average residual carbon content for DS, COM, and VC was 35 ± 34, 85 ± 46, and 55 ± 46%, respectively. The organic carbon mineralisation rate depended on the soil type. The additives induced significant N mineralisation in both soils: the average increment in mineral N content was 1.7 times the total added N on acidic sand and 4.2 times it on calcareous loam for the 1% dose. The agronomic efficiency of COM and VC as fertilisers was lower than that of DS. In the short term, DS proved to be the best fertiliser, while COM was the best for organic matter replenishment.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7451
Author(s):  
Barbara Breza-Boruta ◽  
Karol Kotwica ◽  
Justyna Bauza-Kaszewska

Properly selected tillage methods and management of the available organic matter resources are considered important measures to enable farming in accordance with the principles of sustainable agriculture. Depending on the depth and intensity of cultivation, tillage practices affect soil chemical composition, structure and biological activity. The three-year experiment was performed on the soil under spring wheat (cv. Tybalt) short-time cultivation. The influence of different tillage systems and stubble management on the soil’s chemical and biological parameters was analyzed. Organic carbon content (OC); content of biologically available phosphorus (Pa), potassium (Ka), and magnesium (Mg); content of total nitrogen (TN), mineral nitrogen forms: N-NO3 and N-NH4 were determined in various soil samples. Moreover, the total number of microorganisms (TNM), bacteria (B), actinobacteria (A), fungi (F); soil respiratory activity (SR); and pH in 1 M KCl (pH) were also investigated. The results show that organic matter amendment is of greater influence on soil characteristics than the tillage system applied. Manure application, as well as leaving the straw in the field, resulted in higher amounts of organic carbon and biologically available potassium. A significant increase in the number of soil microorganisms was also observed in soil samples from the experimental plots including this procedure.


2011 ◽  
Vol 35 (1) ◽  
pp. 25-40 ◽  
Author(s):  
Flávio Adriano Marques ◽  
Márcia Regina Calegari ◽  
Pablo Vidal-Torrado ◽  
Peter Buurman

The occurrence of Umbric Ferralsols with thick umbric epipedons (> 100 cm thickness) in humid Tropical and Subtropical areas is a paradox since the processes of organic matter decomposition in these environments are very efficient. Nevertheless, this soil type has been reported in areas in the Southeast and South of Brazil, and at some places in the Northeast. Aspects of the genesis and paleoenvironmental significance of these Ferralsols still need a better understanding. The processes that made the umbric horizons so thick and dark and contributed to the preservation of organic carbon (OC) at considerable depths in these soils are of special interest. In this study, eight Ferralsols with a thick umbric horizon (UF) under different vegetation types were sampled (tropical rain forest, tropical seasonal forest and savanna woodland) and their macromorphological, physical, chemical and mineralogical properties studied to detect soil characteristics that could explain the preservation of high carbon amounts at considerable depths. The studied UF are clayey to very clayey, strongly acidic, dystrophic, and Al-saturated and charcoal fragments are often scattered in the soil matrix. Kaolinites are the main clay minerals in the A and B horizons, followed by abundant gibbsite and hydroxyl-interlayered vermiculite. The latter was only found in UFs derived from basalt rock in the South of the country. Total carbon (TC) ranged from 5 to 101 g kg-1 in the umbric epipedon. Dichromate-oxidizable organic carbon represented nearly 75 % of TC in the thick A horizons, while non-oxidizable C, which includes recalcitrant C (e.g., charcoal), contributed to the remaining 25 % of TC. Carbon contents were not related to most of the inorganic soil variables studied, except for oxalate-extractable Al, which individually explained 69 % (P < 0.001) of the variability of TC in the umbric epipedon. Clay content was not suited as predictor of TC or of the other studied C forms. Bulk density, exchangeable Al3+, Al saturation, ECEC and other parameters obtained by selective extraction were not suitable as predictors of TC and other C forms. Interactions between organic matter and poorly crystalline minerals, as indicated by oxalate-extractable Al, appear to be one of the possible organic matter protection mechanisms of these soils.


Soil Research ◽  
1995 ◽  
Vol 33 (6) ◽  
pp. 975 ◽  
Author(s):  
A Golchin ◽  
P Clarke ◽  
JM Oades ◽  
JO Skjemstad

Soil samples were obtained from the surface horizons of five untilled sites and adjacent sites under short- and long-term cultivation. The soil samples were fractionated based on density and organic materials were concentrated in various fractions which enabled comparative chemical composition of the organic materials in cultivated and uncultivated sites by solid-state C-13 CP/MAS NMR spectroscopy. Changes in the nature of organic carbon with cultivation were different in different soils and resulted from variations in the chemistry of carbon inputs to the soils and a greater extent of decomposition of organic materials in cultivated soils. Differences in the chemical composition of organic carbon between cultivated and uncultivated soils resided mostly in organic materials occluded within aggregates, whereas the chemistry of organic matter associated with clay particles showed only small changes. The results indicate a faster decomposition of O-alkyl C in the cultivated soils. Wet aggregate stability, mechanically dispersible clay and modulus of rupture tests were used to assess the effects of cultivation on structural stability of soils. In four of five soils, the virgin sites and sites which had been under long-term pasture had a greater aggregate stability than the cultivated sites. Neither total organic matter nor total O-alkyl C content was closely correlated with aggregate stability, suggesting that only a part of soil carbon or carbohydrate is involved in aggregate stability. The fractions of carbon and O-alkyl C present in the form of particulate organic matter occluded within aggregates were better correlated with aggregate stability (r = 0.86** and 0.88**, respectively). Cultivation was not the dominant factor influencing water-dispersible clay across the range of soil types used in this study. The amount of dispersible clay was a function of total clay content and the percentage of clay dispersed was controlled by factors such as clay mineralogy, CaCO3 and organic matter content of soils. The tendency of different soils for hard-setting and crusting, as a result of structural collapse, was reflected in the modulus of rupture (MOR). The cultivated sites had significantly higher MOR than their non-tilled counterparts. The soils studied had different MOR due to differences in their physical and chemical properties.


Sign in / Sign up

Export Citation Format

Share Document