Mediterranean fuel models and potential fire behaviour in Greece

2002 ◽  
Vol 11 (2) ◽  
pp. 127 ◽  
Author(s):  
A. P. Dimitrakopoulos

The Mediterranean vegetation types of Greece were classified into typical fuel models by measuring the following fuel parameters in 181 representative natural fuel complexes: 1-h, 10-h, 100-h and 1000-h fuel loads; foliage load; litter load and depth; total fuel load; average height and soil cover of the herbaceous, small shrub (up to 0.5 m) and tall shrub (0.5-3.0 m) vegetation layers. The data set was statistically analysed by a two-stage clustering procedure that produced seven distinct fuel models: two for evergreen-sclerophyllous shrublands (maquis), one for kermes oak shrublands, two for phrygana, one for grasslands and one for the litter layer of Mediterranean pine forests. The indicative range (upper and lower limit) of potential fire behavior for every fuel model was calculated with the BEHAVE fire behavior prediction system, using as inputs the specific fuel parameter values of every model. The shrubland fuel models resulted in fires with high intensity and rate of spread, while the phrygana and grassland models in fast fires of medium to low intensity. The litter layer of the pine forests provided the least severe burning conditions.

2020 ◽  
Vol 12 (12) ◽  
pp. 1911
Author(s):  
Zhengpeng Li ◽  
Hua Shi ◽  
James E. Vogelmann ◽  
Todd J. Hawbaker ◽  
Birgit Peterson

Assessing fire behavior in shrubland/grassland ecosystems of the western United States has proven especially problematic, in part due to the complex nature of the vegetation and its relationships with prior fire history events. Our goals in this study were (1) to determine if we can effectively leverage the high temporal resolution capabilities of current remote sensing systems such as the Moderate Resolution Imaging Spectroradiometer (MODIS) to improve upon shrub and grassland mapping and (2) to determine if these improvements alter and improve fire behavior model results in these grass- and shrub-dominated systems. The study focused on the shrublands and grasslands of the Owyhee Basin, which is located primarily in southern Idaho. Shrubland and grassland fuel load dynamics were characterized using Normalized Difference Vegetation Index (NDVI) and Net Primary Production (NPP) datasets (both derived from MODIS). NDVI shrub and grassland values were converted to biomass, and custom fire behavior fuel models were then developed to evaluate the impacts of surface fuel changes on fire behaviors. Results from the study include the following: (1) high intra- and interannual spectral variability characterized these shrubland/grassland ecosystems, and this spectral variability was highly correlated with climate variables, most notably precipitation; (2) fire activity had a higher likelihood of occurring in areas where the NDVI (and biomass) differential between spring and summer values was especially high; (3) the annual fuel loads estimated from MODIS NPP showed that live herbaceous fuel loads were closely correlated with annual precipitation; (4) estimated fuel load accumulation was higher on shrublands than grasslands with the same vegetation productivity; (5) the total fuel load on shrublands was impacted by shrubland age, and live woody fuel load was over 66% of the total fuel load; and (6) comparisons of simulated fire behavior and spread between dynamic and static fuel loads, the latter estimates being obtained from the operational and nationwide LANDFIRE program, showed clear differences in fire indices and fire burn areas between the dynamic fuel loads and the static fuel loads. Current standard fuel models appear to have bias in underestimating the fire spread and total burnable area.


1995 ◽  
Vol 5 (3) ◽  
pp. 153 ◽  
Author(s):  
JL Dupuy

Laboratory fire experiments were conducted in both Pinus pinaster and Pinus halepensis litters in order to investigate the effect of slope on fire behaviour for different levels of fuel load. Simulated slopes ranged between -30 degrees and +30 degrees. The results are reported in terms of rate of spread and rate of mass loss when observed fire was quasi-steady. Upslope fires were observed, on the present devices, to be unsteady, and their flame to be three-dimensionnal, when slope and fuel load exceeded certain limits. The heat transfers involved in the explanation of the observed behaviours are discussed, especially on the base of the quite different results obtained in the two tested fuel. beds.


2005 ◽  
Vol 35 (7) ◽  
pp. 1626-1639 ◽  
Author(s):  
Miguel G Cruz ◽  
Martin E Alexander ◽  
Ronald H Wakimoto

The rate of spread of crown fires advancing over level to gently undulating terrain was modeled through nonlinear regression analysis based on an experimental data set pertaining primarily to boreal forest fuel types. The data set covered a significant spectrum of fuel complex and fire behavior characteristics. Crown fire rate of spread was modeled separately for fires spreading in active and passive crown fire regimes. The active crown fire rate of spread model encompassing the effects of 10-m open wind speed, estimated fine fuel moisture content, and canopy bulk density explained 61% of the variability in the data set. Passive crown fire spread was modeled through a correction factor based on a criterion for active crowning related to canopy bulk density. The models were evaluated against independent data sets originating from experimental fires. The active crown fire rate of spread model predicted 42% of the independent experimental crown fire data with an error lower then 25% and a mean absolute percent error of 26%. While the models have some shortcomings and areas in need of improvement, they can be readily utilized in support of fire management decision making and other fire research studies.


2016 ◽  
Vol 362 ◽  
pp. 156-168 ◽  
Author(s):  
Pere Casals ◽  
Teresa Valor ◽  
Albert Besalú ◽  
Domingo Molina-Terrén

1977 ◽  
Vol 7 (2) ◽  
pp. 357-367 ◽  
Author(s):  
Richard J. Sneeuwjagt ◽  
William H. Frandsen

Fire behavior observations with rates of spread up to 20 m/min (66 ft/min) have been recorded on 40 prescribed grass fires in central Washington and northern California. Physical parameters were also recorded describing the grass fuel array (fuel load, moisture content (≤ 15%), etc.), along with the wind speed (up to 8 km/h) and slope (near zero). These data were sufficient to allow a prediction of the fire spread rate, combustion zone depth, and flame length using the Rothermel fire spread model.A least squares fit of the observed versus the predicted results shows that positive agreement (slope = 1, intercept = 0) is supported for rate of spread. Flame length shows positive agreement for the intercept but not for slope. Combustion zone depth does not show positive agreement for either intercept or slope. The authors attribute the lack of positive agreement to less accurate measurements (ocular estimates) of the flame length and combustion zone depth.


1995 ◽  
Vol 5 (3) ◽  
pp. 143 ◽  
Author(s):  
RS McAlpine

It has been theorized that the amount of fuel involved in a fire front can influence the rate of spread of the fire. Three data sets are examined in an attempt to prove this relationship. The first, a Canadian Forest Service database of over 400 experimental, wild, and prescribed fires showed a weak relationship in some fuel complexes. The second, a series of field experimental fires conducted to isolate the relationship, showed a small effect. The final data set, from a series of 47 small plots (3m x 3m) burned with a variety of fuel loadings, also show a weak relationship. While a relationship was shown to exist, it is debatable whether it should be included in a fire behavior prediction system. Inherent errors associated with predicting fuel consumption can be compounded, causing additional, more critical, errors with the derived fire spread rate.


FLORESTA ◽  
2013 ◽  
Vol 43 (1) ◽  
pp. 27 ◽  
Author(s):  
Benjamin Leonardo Alves White ◽  
Adauto Souza Ribeiro ◽  
Genésio Tâmara Ribeiro ◽  
Rosemeri Melo Souza

  The objectives of this research were, for scientific and management purposes, to build fuel models and simulate their fire behavior. Three different vegetation types (shrublands, grass fields and tropical forests) of the “Serra de Itabaiana” National Park were analyzed. The fuel models were developed by destructive sampling and the collected data was inserted in the software “BehavePlus 5.0”. The results revealed that the fuel model for the shrublands presented the longest flame length, the highest fireline intensity and the greatest heat release per unit area. The fuel model for the grass fields presented the fastest surface rate of spread; and the fuel model for the tropical forests the lower fire intensity.Keywords: Fire simulator; BehavePlus; conservation units.ResumoConstruindo modelos de material combustível e simulando o seu comportamento de fogo no Parque Nacional Serra de Itabaiana, SE. Este estudo foi desenvolvido com o objetivo de construir modelos de material combustível para três diferentes formações vegetacionais (florestas arbustivas, campos graminosos e florestas tropicais), localizadas dentro do Parque Nacional Serra de Itabaiana, e simular o comportamento do fogo dentro dessas fitofisionomias, para efeitos de pesquisa e manejo. Para tal, modelos foram construídos através de amostragem destrutiva e os dados coletados inseridos no programa "BehavePlus 5.0". De acordo com os resultados, o modelo para as florestas arbustivas apresentou o maior comprimento de chamas, a maior intensidade do fogo e a maior quantidade de energia liberada por unidade de área. O modelo para os campos graminosos apresentou maior velocidade de propagação do fogo e, no modelo para as florestas tropicais, o fogo simulado apresentou menor intensidade.Palavras-chave: Manejo do fogo; BehavePlus; unidades de conservação.    


2009 ◽  
Vol 18 (6) ◽  
pp. 686 ◽  
Author(s):  
Jeffrey M. Kane ◽  
J. Morgan Varner ◽  
Eric E. Knapp

Mechanically masticated fuelbeds are distinct from natural or logging slash fuelbeds, with different particle size distributions, bulk density, and particle shapes, leading to challenges in predicting fire behavior and effects. Our study quantified some physical properties of fuel particles (e.g. squared quadratic mean diameter, proportion of non-cylindrical particles) and surface fuel loading with planar intercept and plot-based methods in 10 mechanically masticated sites in northern California and south-western Oregon. Total woody fuel load differed among masticated sites, ranging from 15.3 to 63.4 Mg ha–1, with the majority of the load concentrated in the 10-h (53.7%) and 1-h (29.2%) time-lag classes. Masticated fuels were densely packed, with total depths ranging from 4.6 to 8.0 cm and fuelbed bulk densities ranging from 45.9 to 115.3 kg m–3. To accurately quantify loading in masticated fuelbeds, we recommend using a hybrid methodology, where 1-h and 10-h fuel loadings are estimated using a plot-based method and 100-h and 1000-h fuel loadings are estimated using the standard planar intercept method. Most masticated fuelbeds differed in loading by fuel class and fuelbed depth, when compared with existing natural and slash-based fuelbeds, suggesting new fire behavior fuel models specific to masticated fuelbeds may be warranted.


2006 ◽  
Vol 36 (11) ◽  
pp. 3015-3028 ◽  
Author(s):  
Martin E Alexander ◽  
Miguel G Cruz

We evaluated the predictive capacity of a rate of spread model for active crown fires (M.G. Cruz, M.E. Alexander, and R.H. Wakimoto. 2005. Can. J. For. Res. 35: 1626–1639) using a relatively large (n = 57) independent data set originating from wildfire observations undertaken in Canada and the United States. The assembled wildfire data were characterized by more severe burning conditions and fire behavior in terms of rate of spread and the degree of crowning activity than the data set used to parameterize the crown fire rate of spread model. The statistics used to evaluate model adequacy showed good fit and a level of uncertainty considered acceptable for a wide variety of fire management and fire research applications. The crown fire rate of spread model predicted 42% of the data with an error lower then ±25%. Mean absolute percent errors of 51% and 60% were obtained for Canadian and American wildfires, respectively. The characteristics of the data set did not allow us to determine where model performance was weaker and consequently identify its shortcomings and areas of future improvement. The level of uncertainty observed suggests that the model can be readily utilized in support of operational fire management decision making and for simulations in fire research studies.


Sign in / Sign up

Export Citation Format

Share Document