Novel fuelbed characteristics associated with mechanical mastication treatments in northern California and south-western Oregon, USA

2009 ◽  
Vol 18 (6) ◽  
pp. 686 ◽  
Author(s):  
Jeffrey M. Kane ◽  
J. Morgan Varner ◽  
Eric E. Knapp

Mechanically masticated fuelbeds are distinct from natural or logging slash fuelbeds, with different particle size distributions, bulk density, and particle shapes, leading to challenges in predicting fire behavior and effects. Our study quantified some physical properties of fuel particles (e.g. squared quadratic mean diameter, proportion of non-cylindrical particles) and surface fuel loading with planar intercept and plot-based methods in 10 mechanically masticated sites in northern California and south-western Oregon. Total woody fuel load differed among masticated sites, ranging from 15.3 to 63.4 Mg ha–1, with the majority of the load concentrated in the 10-h (53.7%) and 1-h (29.2%) time-lag classes. Masticated fuels were densely packed, with total depths ranging from 4.6 to 8.0 cm and fuelbed bulk densities ranging from 45.9 to 115.3 kg m–3. To accurately quantify loading in masticated fuelbeds, we recommend using a hybrid methodology, where 1-h and 10-h fuel loadings are estimated using a plot-based method and 100-h and 1000-h fuel loadings are estimated using the standard planar intercept method. Most masticated fuelbeds differed in loading by fuel class and fuelbed depth, when compared with existing natural and slash-based fuelbeds, suggesting new fire behavior fuel models specific to masticated fuelbeds may be warranted.

1996 ◽  
Vol 6 (3) ◽  
pp. 117 ◽  
Author(s):  
JW Van Wagdendonk ◽  
JM Benedict ◽  
WM Sydoriak

A study of the physical properties of Sierra Nevada conifer fuel particles showed that average diameter, squared quadratic mean diameter, surface-area-to-volume ratio, and specific gravity varied significantly by species for all four timelag fuel diameter size classes. The nonhorizontal angle was not significantly affected by size class, and the developmental stage of the overstory did not affect any of the properties. These values are used to calculate fuel weight and predict fire behavior. Regional variation in physical properties can result in fuel weight estimates for the Sierra Nevada that differ from under 40.8 percent to over 8.3 percent from those calculated from Rocky Mountain values. These differences made small changes in predicted fire behavior.


2020 ◽  
Vol 12 (12) ◽  
pp. 1911
Author(s):  
Zhengpeng Li ◽  
Hua Shi ◽  
James E. Vogelmann ◽  
Todd J. Hawbaker ◽  
Birgit Peterson

Assessing fire behavior in shrubland/grassland ecosystems of the western United States has proven especially problematic, in part due to the complex nature of the vegetation and its relationships with prior fire history events. Our goals in this study were (1) to determine if we can effectively leverage the high temporal resolution capabilities of current remote sensing systems such as the Moderate Resolution Imaging Spectroradiometer (MODIS) to improve upon shrub and grassland mapping and (2) to determine if these improvements alter and improve fire behavior model results in these grass- and shrub-dominated systems. The study focused on the shrublands and grasslands of the Owyhee Basin, which is located primarily in southern Idaho. Shrubland and grassland fuel load dynamics were characterized using Normalized Difference Vegetation Index (NDVI) and Net Primary Production (NPP) datasets (both derived from MODIS). NDVI shrub and grassland values were converted to biomass, and custom fire behavior fuel models were then developed to evaluate the impacts of surface fuel changes on fire behaviors. Results from the study include the following: (1) high intra- and interannual spectral variability characterized these shrubland/grassland ecosystems, and this spectral variability was highly correlated with climate variables, most notably precipitation; (2) fire activity had a higher likelihood of occurring in areas where the NDVI (and biomass) differential between spring and summer values was especially high; (3) the annual fuel loads estimated from MODIS NPP showed that live herbaceous fuel loads were closely correlated with annual precipitation; (4) estimated fuel load accumulation was higher on shrublands than grasslands with the same vegetation productivity; (5) the total fuel load on shrublands was impacted by shrubland age, and live woody fuel load was over 66% of the total fuel load; and (6) comparisons of simulated fire behavior and spread between dynamic and static fuel loads, the latter estimates being obtained from the operational and nationwide LANDFIRE program, showed clear differences in fire indices and fire burn areas between the dynamic fuel loads and the static fuel loads. Current standard fuel models appear to have bias in underestimating the fire spread and total burnable area.


2002 ◽  
Vol 11 (2) ◽  
pp. 127 ◽  
Author(s):  
A. P. Dimitrakopoulos

The Mediterranean vegetation types of Greece were classified into typical fuel models by measuring the following fuel parameters in 181 representative natural fuel complexes: 1-h, 10-h, 100-h and 1000-h fuel loads; foliage load; litter load and depth; total fuel load; average height and soil cover of the herbaceous, small shrub (up to 0.5 m) and tall shrub (0.5-3.0 m) vegetation layers. The data set was statistically analysed by a two-stage clustering procedure that produced seven distinct fuel models: two for evergreen-sclerophyllous shrublands (maquis), one for kermes oak shrublands, two for phrygana, one for grasslands and one for the litter layer of Mediterranean pine forests. The indicative range (upper and lower limit) of potential fire behavior for every fuel model was calculated with the BEHAVE fire behavior prediction system, using as inputs the specific fuel parameter values of every model. The shrubland fuel models resulted in fires with high intensity and rate of spread, while the phrygana and grassland models in fast fires of medium to low intensity. The litter layer of the pine forests provided the least severe burning conditions.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1306
Author(s):  
Kat E. Morici ◽  
John D. Bailey

Fire exclusion and a lengthening fire season has resulted in an era of megafires. Fuel reduction treatments in forested ecosystems are designed to guard against future extreme wildfire behavior. Treatments create a heterogenous landscape and facilitate ecosystem function and resilience in fire-adapted forests of the western United States. Despite widespread recognition that repeated fuel treatments are needed to maintain desired stand characteristics over time, few field studies have evaluated treatment longevity. The Blue Mountains Fire and Fire Surrogate site in northeastern Oregon presented an opportunity to investigate woody fuel loading 15–17 years after four treatments: mechanical thin, prescribed burn, both thin and burn, and no treatment control. The principal findings were: (1) fine fuel load 15 years post-burn remained slightly below pre-treatment values; (2) rotten coarse fuel load was reduced post-burn, but sound coarse fuel was not altered by any active treatment; and (3) total woody fuel load 15–17 years post-treatment was similar to pre-treatment values. Understanding surface fuel loading is essential for predicting fire behavior. Overall, the effects of fuel reduction treatments on woody surface fuels were transitory in dry mixed conifer forests. Frequent maintenance treatments are recommended to protect values at risk in areas with high fire hazards. Quantifying the persistence of changes in forest conditions aids in the planning and analysis of future fuel treatments, along with scheduling maintenance of existing treated areas.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 691
Author(s):  
Raven M. Krieger ◽  
Brian E. Wall ◽  
Cody W. Kidd ◽  
John-Pascal Berrill

There is concern that forest management activities such as chemical thinning may increase hazardous fuel loading and therefore increase risk of stand-replacing wildfire. Chemical thinning, often accomplished by frill treatment of unwanted trees, leaves trees standing dead for a time before they fall and become surface fuels. In coastal northern California, frill treatment is used as a forest rehabilitation treatment that removes tanoak (Notholithocarpus densiflorus) to release merchantable conifers from excessive competition. We studied fuel bed depth and fuel loading after frill treatment of tanoak along a 16-year chronosequence that substituted space for time. The total depth of fuel bed was separated into woody fuels, litter, and duff. The height of each layer was variable and greatest on average in post-treatment year 5 after treated tanoak had begun to break apart and fall. Initially, the evergreen tanoak trees retained their foliage for at least a year after treatment. Five years after treatment, many tanoak had fallen and transitioned to become fine- and coarse woody debris. After 11 years, the larger pieces of down wood were mostly classified as rotten. After 16 years, the fuel loading appeared roughly equivalent to pre-treatment levels, however we did not explicitly test for differences due to potential confounding between time and multiple factors such as inter-annual climate variations and site attributes. Nevertheless, our data provide some insight into changes in surface fuel characteristics due to rehabilitation treatments. These data can be used as inputs for fire behavior modeling to generate indicative predictions of fire effects such as fire severity and how these change over time since treatment.


2008 ◽  
Vol 38 (9) ◽  
pp. 2394-2404 ◽  
Author(s):  
Ralph M. Nelson ◽  
J. Kevin Hiers

Fire managers often model pine needles as 1 h timelag fuels, but fuelbed properties may significantly change the rate at which needles exchange moisture with the atmosphere. The problem of determining whether moisture loss from fine fuels is being controlled by individual particles or by the fuelbed remains unresolved. Results from this laboratory experiment indicate that first-period timelags of longleaf pine ( Pinus palustris Mill.) needles are altered by fuelbed loading and needle arrangement. Timelags of individual needles ranged from 3.3 to 5.3 h; timelags of beds of vertically oriented needles (4.4 to 8.6 h) approximated those of individual particles, but were slightly influenced by loading. Beds of horizontal needles dried with load-dependent timelags that varied from 6.5 to 31.6 h. Fuel loads ranged from 0.04 (for individual particles) to 1.07 kg·m–2. We report a new metric, the area drying rate, which is analogous to a unit-area burning rate. For beds of flat needles, plots of the area drying rate versus fuel load illustrate a transition from control by individual particles to control by the bed structure when fuel loading is approximately 0.33 kg·m–2. Beds of vertical needles were particle controlled. Results should be useful to fire managers when modeling fire behavior.


Botany ◽  
2017 ◽  
Vol 95 (3) ◽  
pp. 307-321 ◽  
Author(s):  
Scott M. Ritter ◽  
Chad M. Hoffman ◽  
Seth A. Ex ◽  
Jane E. Stewart

Parasitic plants are capable of causing substantial alterations to plant communities through impacts on individual host plants. Lodgepole pine dwarf mistletoe is an important parasite in forests of the western USA that causes reductions to productivity and is thought to alter wildland fuel complexes. These impacts are hypothesized to vary with infestation severity. To test this, we used a linear mixed modeling approach to evaluate the relationship between dwarf mistletoe infestation severity and parameters representing stand structure and surface and canopy fuels in infested lodgepole pine stands in central Colorado. Infestation severity was negatively related to live basal area, average tree size, canopy base height, canopy fuel load, and canopy bulk density, and was positively related to the loading of woody surfaces fuels greater than 0.64 cm in diameter. No relationship was detected between infestation severity and live tree density, or live crown ratio. These results confirm the long-held assumption that dwarf mistletoe increases surface fuel loading in lodgepole pine communities, but also suggest that infested stands have reduced amounts of available canopy fuel. These findings have implications for potential fire behavior and highlight the importance of dwarf mistletoe in predicting the spatial and temporal dynamics of wildland fuels.


2021 ◽  
Vol 13 (8) ◽  
pp. 1561
Author(s):  
Chinsu Lin ◽  
Siao-En Ma ◽  
Li-Ping Huang ◽  
Chung-I Chen ◽  
Pei-Ting Lin ◽  
...  

Surface fuel loading is a key factor in controlling wildfires and planning sustainable forest management. Spatially explicit maps of surface fuel loading can highlight the risks of a forest fire. Geospatial information is critical in enabling careful use of deliberate fire setting and also helps to minimize the possibility of heat conduction over forest lands. In contrast to lidar sensing and/or optical sensing based methods, an approach of integrating in-situ fuel inventory data, geospatial interpolation techniques, and multiple linear regression methods provides an alternative approach to surface fuel load estimation and mapping over mountainous forests. Using a stratified random sampling based inventory and cokriging analysis, surface fuel loading data of 120 plots distributed over four kinds of fuel types were collected in order to develop a total surface fuel loading model (lntSFL-BioTopo model) and a fine surface fuel model (lnfSFL-BioTopo model) for generating tSFL and fSFL maps. Results showed that the combination of topographic parameters such as slope, aspect, and their cross products and the fuel types such as pine stand, non-pine conifer stand, broadleaf stand, and conifer–broadleaf mixed stand was able to appropriately describe the changes in surface fuel loads over a forest with diverse terrain morphology. Based on a cross-validation method, the estimation of tSFL and fSFL of the study site had an RMSE of 3.476 tons/ha and 3.384 tons/ha, respectively. In contrast to the average loading of all inventory plots, the estimation for tSFL and fSFL had a relative error of 38% (PRMSE). The reciprocal of estimation bias of both SFL-BioTopo models tended to be an exponential growth function of the amount of surface fuel load, indicating that the estimation accuracy of the proposed method is likely to be improved with further study. In the regression modeling, a natural logarithm transformation of the surface fuel loading prevented the outcome of negative estimates and thus improved the estimation. Based on the results, this paper defined a minimum sampling unit (MSU) as the area for collecting surface fuels for interpolation using a cokriging model. Allocating the MSUs at the boundary and center of a plot improved surface fuel load prediction and mapping.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2537
Author(s):  
Felix Charvet ◽  
Felipe Silva ◽  
Luís Ruivo ◽  
Luís Tarelho ◽  
Arlindo Matos ◽  
...  

Charcoal production in Portugal is mostly based on the valorization of woody residues from cork oak and holm oak, the latter being considered a reference feedstock in the market. Nevertheless, since wildfire prevention became a priority in Portugal, after the recent dramatic wildfires, urgent actions are being conducted to reduce the fuel load in the forests, which is increasing the amount of biomass that is available for valorization. Additionally, biomass residues from agriculture, forest management, control of invasive species, partially burnt wood from post-fire recovery actions, and waste wood from storm devastated forests need also to be considered within the national biomass valorization policies. This has motivated the present work on whether the carbonization process can be used to valorize alternative woody biomasses not currently used on a large scale. For this purpose, slow pyrolysis experiments were carried out with ten types of wood, using a fixed bed reactor allowing the controlled heating of large fuel particles at 0.1 to 5 °C/min and final temperatures within 300–450 °C. Apart from an evaluation of the mass balance of the process, emphasis was given to the properties of the resulting charcoals considering its major market in Portugal—barbecue charcoal for both recreational and professional purposes.


Sign in / Sign up

Export Citation Format

Share Document