Testing the Effect of Fuel Consumption on Fire Spread Rate

1995 ◽  
Vol 5 (3) ◽  
pp. 143 ◽  
Author(s):  
RS McAlpine

It has been theorized that the amount of fuel involved in a fire front can influence the rate of spread of the fire. Three data sets are examined in an attempt to prove this relationship. The first, a Canadian Forest Service database of over 400 experimental, wild, and prescribed fires showed a weak relationship in some fuel complexes. The second, a series of field experimental fires conducted to isolate the relationship, showed a small effect. The final data set, from a series of 47 small plots (3m x 3m) burned with a variety of fuel loadings, also show a weak relationship. While a relationship was shown to exist, it is debatable whether it should be included in a fire behavior prediction system. Inherent errors associated with predicting fuel consumption can be compounded, causing additional, more critical, errors with the derived fire spread rate.

Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 81
Author(s):  
Henry Hart ◽  
Daniel D. B. Perrakis ◽  
Stephen W. Taylor ◽  
Christopher Bone ◽  
Claudio Bozzini

In this study, we investigate a novel application of the photogrammetric monoplotting technique for assessing wildfires. We demonstrate the use of the software program WSL Monoplotting Tool (MPT) to georeference operational oblique aerial wildfire photographs taken during airtanker response in the early stages of fire growth. We located the position of the fire front in georeferenced pairs of photos from five fires taken 31–118 min apart, and calculated the head fire spread distance and head fire rate of spread (HROS). Our example photos were taken 0.7 to 4.7 km from fire fronts, with camera angles of incidence from −19 to −50° to image centre. Using high quality images with detailed landscape features, it is possible to identify fire front positions with high precision; in our example data, the mean 3D error was 0.533 m and the maximum 3D error for individual fire runs was less than 3 m. This resulted in a maximum HROS error due to monoplotting of only ~0.5%. We then compared HROS estimates with predictions from the Canadian Fire Behavior Prediction System, with differences mainly attributed to model error or uncertainty in weather and fuel inputs. This method can be used to obtain observations to validate fire spread models or create new empirical relationships where databases of such wildfire photos exist. Our initial work suggests that monophotogrammetry can provide reproducible estimates of fire front position, spread distance and rate of spread with high accuracy, and could potentially be used to characterize other fire features such as flame and smoke plume dimensions and spotting.


2002 ◽  
Vol 11 (2) ◽  
pp. 153 ◽  
Author(s):  
Ralph M. Nelson, Jr.

In previous descriptions of wind-slope interaction and the spread rate of wildland fires it is assumed that the separate effects of wind and slope are independent and additive and that corrections for these effects may be applied to spread rates computed from existing rate of spread models. A different approach is explored in the present paper in which the upslope component of the fire's buoyant velocity is used with the speed and direction of the ambient wind to produce effective values of wind speed and direction that determine the rate of spread vector. Thus the effective wind speed can replace the ambient wind speed in any suitable fire spread model and provide a description of the combined effects on the fire behavior. The difference between current and threshold values of the effective wind speed also can be used to determine whether fire will spread in a given fuel type. The model is tested with data from experiments reported by Weise (1993) in which fire spread was in response to variation in both wind speed and slope angle. The Weise spread rate data were satisfactorily correlated using dimensional methods and the observed spread rate was reasonably well predicted with an existing rate of spread model. Directional aspects of the model were not tested because the Weise (1993) study did not include winds with a cross-slope component.


Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 69
Author(s):  
Daryn Sagel ◽  
Kevin Speer ◽  
Scott Pokswinski ◽  
Bryan Quaife

Most wildland and prescribed fire spread occurs through ground fuels, and the rate of spread (RoS) in such environments is often summarized with empirical models that assume uniform environmental conditions and produce a unique RoS. On the other hand, representing the effects of local, small-scale variations of fuel and wind experienced in the field is challenging and, for landscape-scale models, impractical. Moreover, the level of uncertainty associated with characterizing RoS and flame dynamics in the presence of turbulent flow demonstrates the need for further understanding of fire dynamics at small scales in realistic settings. This work describes adapted computer vision techniques used to form fine-scale measurements of the spatially and temporally varying RoS in a natural setting. These algorithms are applied to infrared and visible images of a small-scale prescribed burn of a quasi-homogeneous pine needle bed under stationary wind conditions. A large number of distinct fire front displacements are then used statistically to analyze the fire spread. We find that the fine-scale forward RoS is characterized by an exponential distribution, suggesting a model for fire spread as a random process at this scale.


2018 ◽  
Vol 48 (1) ◽  
pp. 105-110
Author(s):  
Jiann C. Yang

A dimensional analysis was performed to correlate the fuel bed fire rate of spread data previously reported in the literature. Under wind condition, six pertinent dimensionless groups were identified, namely dimensionless fire spread rate, dimensionless fuel particle size, fuel moisture content, dimensionless fuel bed depth or dimensionless fuel loading density, dimensionless wind speed, and angle of inclination of fuel bed. Under no-wind condition, five similar dimensionless groups resulted. Given the uncertainties associated with some of the parameters used to estimate the dimensionless groups, the dimensionless correlations using the resulting dimensionless groups correlate the fire rates of spread reasonably well under wind and no-wind conditions.


2006 ◽  
Vol 15 (2) ◽  
pp. 179 ◽  
Author(s):  
J. Ramiro Martínez-de Dios ◽  
Jorge C. André ◽  
João C. Gonçalves ◽  
Begoña Ch. Arrue ◽  
Aníbal Ollero ◽  
...  

This paper presents an experimental method using computer-based image processing techniques of visual and infrared movies of a propagating fire front, taken from one or more cameras, to supply the time evolutions of the fire front shape and position, flame inclination angle, height, and base width. As secondary outputs, it also provides the fire front rate of spread and a 3D graphical model of the fire front that can be rendered from any virtual view. The method is automatic and non-intrusive, has space–time resolution close to continuum and can be run in real-time or deferred modes. It is demonstrated in simple laboratory experiments in beds of pine needles set upon an inclinable burn table, with point and linear ignitions, but can be extended to open field situations.


2019 ◽  
Vol 100 (11) ◽  
pp. 2137-2145 ◽  
Author(s):  
K. Lagouvardos ◽  
V. Kotroni ◽  
T. M. Giannaros ◽  
S. Dafis

AbstractOn 23 July 2018, Attica, Greece, was impacted by a major wildfire that took place in a wildland–urban interface area and exhibited extreme fire behavior, characterized by a very high rate of spread. One-hundred civilian fatalities were registered, establishing this wildfire as the second-deadliest weather-related natural disaster in Greece, following the heat wave of July 1987. On the day of the deadly wildfire, a very strong westerly flow was blowing for more than 10 h over Attica. Wind gusts up to 30–34 m s−1 occurred over the mountainous areas of Attica, with 20–25 m s−1 in the city of Athens and surrounding suburban areas. This strong westerly flow interacted with the local topography and acted as downslope flow over the eastern part of Attica, with temperatures rising up to 39°C and relative humidity dropping to 19% prior to the onset of the wildfire. These weather elements are widely acknowledged as the major contributing factors to extreme fire behavior. WRF-SFIRE correctly predicted the spatiotemporal distribution of the fire spread and demonstrated its utility for fire spread warning purposes.


Fire ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 18 ◽  
Author(s):  
Ginny Marshall ◽  
Dan Thompson ◽  
Kerry Anderson ◽  
Brian Simpson ◽  
Rodman Linn ◽  
...  

Current methods of predicting fire spread in Canadian forests are suited to large wildfires that spread through natural forests. Recently, the use of mechanical and thinning treatments of forests in the wildland-urban interface of Canada has increased. To assist in community wildfire protection planning in forests not covered by existing operational fire spread models, we use FIRETEC to simulate fire spread in lowland black spruce fuel structures, the most common tree stand in Canada. The simulated treatments included the mechanical mulching of strips, and larger, irregularly shaped areas. In all cases, the removal of fuel by mulch strips broke up the fuels, but also caused wind speed increases, so little decrease in fire spread rate was modelled. For large irregular clearings, the fire spread slowly through the mulched wood chips, and large decreases in fire spread and intensity were simulated. Furthermore, some treatments in the black spruce forest were found to be effective in decreasing the distance and/or density of firebrands. The simulations conducted can be used alongside experimental fires and documented wildfires to examine the effectiveness of differing fuel treatment options to alter multiple components of fire behavior.


2019 ◽  
Vol 16 ◽  
pp. 00040
Author(s):  
Aleksandra Volokitina ◽  
Dina Nazimova ◽  
Tatiana Sofronova ◽  
Mikhail Korets

Protected areas (PAs) are established to conserve biological diversity, to maintain nature complexes and objects in their natural condition. Strict nature reserves prevail in Russia by their total area. The whole nature complex is forever extracted from economic use in nature reserves. Here it is prohibited to pursue any activity which might disturb or damage the nature complexes. Even under the existing strict protection from anthropogenic ignition sources, vegetation fires do occur on their territory. Besides, lightnings − these natural ignition sources − are impossible to exclude. Since large destructive fires are impermissible in nature reserves, the later especially need vegetation fire behavior prediction for fire management. Fire behavior prediction includes fire spread rate, development (from surface fire into crown or ground one) and fire effects. All this is necessary for taking optimal decisions on how to control each occurring fire and how to suppress it. The Sukachev Institute of Forest SB RAS has developed a method to improve forest fire danger rating and a technique of vegetation fire behavior prediction using vegetation fuel maps (VF maps).


2009 ◽  
Vol 18 (6) ◽  
pp. 698 ◽  
Author(s):  
Paulo M. Fernandes ◽  
Hermínio S. Botelho ◽  
Francisco C. Rego ◽  
Carlos Loureiro

An experimental burning program took place in maritime pine (Pinus pinaster Ait.) stands in Portugal to increase the understanding of surface fire behaviour under mild weather. The spread rate and flame geometry of the forward and backward sections of a line-ignited fire front were measured in 94 plots 10–15 m wide. Measured head fire rate of spread, flame length and Byram’s fire intensity varied respectively in the intervals of 0.3–13.9 m min–1, 0.1–4.2 m and 30–3527 kW m–1. Fire behaviour was modelled through an empirical approach. Rate of forward fire spread was described as a function of surface wind speed, terrain slope, moisture content of fine dead surface fuel, and fuel height, while back fire spread rate was correlated with fuel moisture content and cover of understorey vegetation. Flame dimensions were related to Byram’s fire intensity but relationships with rate of spread and fine dead surface fuel load and moisture are preferred, particularly for the head fire. The equations are expected to be more reliable when wind speed and slope are less than 8 km h–1 and 15°, and when fuel moisture content is higher than 12%. The results offer a quantitative basis for prescribed fire management.


1992 ◽  
Vol 2 (1) ◽  
pp. 41 ◽  
Author(s):  
S Pickford ◽  
M Suharti ◽  
A Wibowo

Fire behavior on a 2 ha fire, inferred from physical evidence observed one week after the fire, was compared with fire behavior estimates obtained using the BEHAVE fire behavior prediction system and fuel measurements in Imperata cylindrica (Alang-alang) made in the same area. This fire probably burned under light winds (3-5 km), high relative humidity, and spread slowly with moderate flame lengths (approximately 100 m hr-1 spread rate, 0.5 - 0.7 m flame lengths). Although appar- ently killed by lethal crown and bole scorch, the young Acacia mangium overstory through which the fire burned resprouted vigorously and apparently survived.


Sign in / Sign up

Export Citation Format

Share Document