Slope and Fuel Load Effects on Fire Behavior: Laboratory Experiments in Pine Needles Fuel Beds

1995 ◽  
Vol 5 (3) ◽  
pp. 153 ◽  
Author(s):  
JL Dupuy

Laboratory fire experiments were conducted in both Pinus pinaster and Pinus halepensis litters in order to investigate the effect of slope on fire behaviour for different levels of fuel load. Simulated slopes ranged between -30 degrees and +30 degrees. The results are reported in terms of rate of spread and rate of mass loss when observed fire was quasi-steady. Upslope fires were observed, on the present devices, to be unsteady, and their flame to be three-dimensionnal, when slope and fuel load exceeded certain limits. The heat transfers involved in the explanation of the observed behaviours are discussed, especially on the base of the quite different results obtained in the two tested fuel. beds.

1993 ◽  
Vol 3 (1) ◽  
pp. 45 ◽  
Author(s):  
EA Catchpole ◽  
WR Catchpole ◽  
RC Rothermel

A series of laboratory fire experiments were conducted in fuel beds consisting of either excelsior (wood wool), or 6.35 mm sticks, or a mixture of these. Tests were done both with and without wind. Various characteristics of the fire, including rate of spread and fireline intensity, were compared with predictions from the Rothermel model. The behavior of the mixed fuel fires, compared to that of the fires in the constituent fuels, did not agree well with the predictions of the model. We conclude that, in order to model the behavior of fire in mixed fuels, the Rothermel model needs modification.


2014 ◽  
Vol 23 (8) ◽  
pp. 1061 ◽  
Author(s):  
Anne Ganteaume ◽  
Marielle Jappiot ◽  
Thomas Curt ◽  
Corinne Lampin ◽  
Laurent Borgniet

In the laboratory, different types of litter samples (constructed v. intact) can be used in flammability experiments but the sampling method of these litters could affect litter flammability results. To assess this effect, samples of litters were collected in South-eastern France, according to two different methods previously used in other studies, one keeping intact the structure of the litter layers (non-constructed litter) and the other requiring the construction of the litter, using mainly the surface litter layer (constructed litter). The comparison of flammability results showed that the sampling method had a significant effect on litter bulk-density, rate of spread and rate of consumption, intact litter being more flammable than reconstructed litter that was artificially compacted. The type of vegetation had a significant effect on litter depth, ignitability, sustainability, consumability and combustibility (except on rate of spread) and the litter composition could explain in part this fire behaviour. The effect of the construction of litters on flammability parameters and its magnitude also differed according to vegetation types. Intact litter structure appeared to be an important driver of its flammability, especially of combustibility and consumability. The assessment of these flammability components will differ when using constructed litter samples instead of intact litter samples, especially according to vegetation types. Future research on litter flammability should take into account the bias due to the litter sampling method when the litter is constructed.


2018 ◽  
Vol 27 (11) ◽  
pp. 727 ◽  
Author(s):  
Miguel G. Cruz ◽  
Andrew L. Sullivan ◽  
James S. Gould ◽  
Richard J. Hurley ◽  
Matt P. Plucinski

The effect of grass fuel load on fire behaviour and fire danger has been a contentious issue for some time in Australia. Existing operational models have placed different emphases on the effect of fuel load on model outputs, which has created uncertainty in the operational assessment of fire potential and has led to end-user and public distrust of model outcomes. A field-based experimental burning program was conducted to quantify the effect of fuel load on headfire rate of spread and other fire behaviour characteristics in grasslands. A total of 58 experimental fires conducted at six sites across eastern Australia were analysed. We found an inverse relationship between fuel load and the rate of spread in grasslands, which is contrary to current, untested, modelling assumptions. This result is valid for grasslands where fuel load is not a limiting factor for fire propagation. We discuss the reasons for this effect and model it to produce a fuel load effect function that can be applied to operational grassfire spread models used in Australia. We also analyse the effect of fuel load on flame characteristics and develop a model for flame height as a function of rate of fire spread and fuel load.


2018 ◽  
Vol 27 (4) ◽  
pp. 280 ◽  
Author(s):  
Zachary D. Lyon ◽  
Penelope Morgan ◽  
Camille S. Stevens-Rumann ◽  
Aaron M. Sparks ◽  
Robert F. Keefe ◽  
...  

Managers masticate fuels to reduce extreme fire hazards, but the effect on fire behaviour within the resulting compact fuelbeds is poorly understood. We burned 54 masticated fuelbeds in laboratory experiments one and two growing seasons after mastication and 75 masticated fuelbeds in prescribed fire experiments one growing season after treatment in three replicate Pinus ponderosa stands. Mastication treatments reduced density of trees >5 cm diameter by 30–72% resulting in total fuel depth of 6.9–13.7 cm and surface woody fuel loading of 1.0–16.0 kg m−2. Flame length and rate of spread were low and similar for coarse and fine mastication treatments and controls. Smouldering combustion lasted 6–22 h in prescribed fire experiments where fuelbeds included duff and were well mixed by machinery, compared with <2 h in the laboratory where fuelbeds did not include duff and had varying fuel moisture. Fuel consumption in the prescribed fires was highly variable, ranging from 0 to 20 cm in depth and was less from 2-year-old fuelbeds than 1-year-old fuelbeds in laboratory burns. Compared with fine mastication treatments, coarse treatments took less time to implement and were more cost-effective. Although laboratory experiments expand our understanding of burning masticated fuels under controlled conditions, they did not readily translate to prescribed burning conditions where fuels, weather and ignition patterns were more variable. This highlights the need for more laboratory experiments and in situ research that together can be used to develop much-needed, scalable predictive models of mastication combustion.


2002 ◽  
Vol 11 (2) ◽  
pp. 127 ◽  
Author(s):  
A. P. Dimitrakopoulos

The Mediterranean vegetation types of Greece were classified into typical fuel models by measuring the following fuel parameters in 181 representative natural fuel complexes: 1-h, 10-h, 100-h and 1000-h fuel loads; foliage load; litter load and depth; total fuel load; average height and soil cover of the herbaceous, small shrub (up to 0.5 m) and tall shrub (0.5-3.0 m) vegetation layers. The data set was statistically analysed by a two-stage clustering procedure that produced seven distinct fuel models: two for evergreen-sclerophyllous shrublands (maquis), one for kermes oak shrublands, two for phrygana, one for grasslands and one for the litter layer of Mediterranean pine forests. The indicative range (upper and lower limit) of potential fire behavior for every fuel model was calculated with the BEHAVE fire behavior prediction system, using as inputs the specific fuel parameter values of every model. The shrubland fuel models resulted in fires with high intensity and rate of spread, while the phrygana and grassland models in fast fires of medium to low intensity. The litter layer of the pine forests provided the least severe burning conditions.


2013 ◽  
Vol 22 (4) ◽  
pp. 440 ◽  
Author(s):  
Jesse K. Kreye ◽  
Leda N. Kobziar ◽  
Wayne C. Zipperer

Mechanical fuels treatments are being used in fire-prone ecosystems where fuel loading poses a hazard, yet little research elucidating subsequent fire behaviour exists, especially in litter-dominated fuelbeds. To address this deficiency, we burned constructed fuelbeds from masticated sites in pine flatwoods forests in northern Florida with palmetto-dominated understoreys and examined the effects of fuel load and fuel moisture content (FMC) on fire behaviour. Flame lengths (49–140 cm) and fireline intensity (183–773 kJ m–1 s–1) increased with loading (10–30 Mg ha–1) and were reduced by 40 and 47% with increasing FMC from 9 to 13%. Rate of spread was not influenced by fuel load, but doubled under drier FMC. Fuel consumption was >90% for all burns. Soil temperatures were influenced by both fuel load and FMC, but never reached lethal temperatures (60°C). However, temperatures of thermocouple probes placed at the fuelbed surface reached 274–503°C. Probe maximum temperature and duration at temperatures ≥60°C (9.5–20.0°C min) both increased with fuel load, but were unaffected by FMC. The fire behaviour observed in these unique litter-dominated fuelbeds provides additional insight into the burning characteristics of masticated fuels in general.


1977 ◽  
Vol 7 (2) ◽  
pp. 357-367 ◽  
Author(s):  
Richard J. Sneeuwjagt ◽  
William H. Frandsen

Fire behavior observations with rates of spread up to 20 m/min (66 ft/min) have been recorded on 40 prescribed grass fires in central Washington and northern California. Physical parameters were also recorded describing the grass fuel array (fuel load, moisture content (≤ 15%), etc.), along with the wind speed (up to 8 km/h) and slope (near zero). These data were sufficient to allow a prediction of the fire spread rate, combustion zone depth, and flame length using the Rothermel fire spread model.A least squares fit of the observed versus the predicted results shows that positive agreement (slope = 1, intercept = 0) is supported for rate of spread. Flame length shows positive agreement for the intercept but not for slope. Combustion zone depth does not show positive agreement for either intercept or slope. The authors attribute the lack of positive agreement to less accurate measurements (ocular estimates) of the flame length and combustion zone depth.


2011 ◽  
Vol 20 (2) ◽  
pp. 272 ◽  
Author(s):  
J.-L. Dupuy ◽  
J. Maréchal ◽  
D. Portier ◽  
J.-C. Valette

A set of 109 laboratory fires in Pinus halepensis fuel beds (1 kg m–2) was used to test the effects of slope (0°, 10°, 20°, 30°) and fuel bed width (1, 2, 3 m) on fire behaviour variables such as rate of spread, fuel consumption, flame residence time, temperatures and flame geometry. The qualitative behaviour of the fires is also reported. The 20° and 30° upslope fires are pointed in shape and fire whirls moving along the fire flanks in the direction of the fire head are systematically observed in 30° upslope fires. Flame residence time increases with increasing slope angle, and both slope angle and fuel bed width affect rate of spread. The slope effects observed in 10° and 20° slope angles and in the narrowest fuel beds (1 and 2 m) are similar to those predicted by operational models. However, the observed slope effect at the 30° slope angle is underestimated by these models, in particular in 3 m-wide fuel beds. Flame temperatures correlate closely with dimensionless height and flame lengths correlate closely with fire line intensity. Mechanisms that could explain the different effects observed are suggested and discussed.


2007 ◽  
Vol 16 (5) ◽  
pp. 531 ◽  
Author(s):  
Patrice Savadogo ◽  
Didier Zida ◽  
Louis Sawadogo ◽  
Daniel Tiveau ◽  
Mulualem Tigabu ◽  
...  

Fuel characteristics, fire behaviour and temperature were studied in relation to grazing, dominant grass type and wind direction in West African savanna–woodland by lighting 32 prescribed early fires. Grazing significantly reduced the vegetation height, total fuel load, and dead and live fuel fractions whereas plots dominated by perennial grasses had higher values for vegetation height, total fuel load and the quantity of live fuel load. Although fire intensity remained insensitive (P > 0.05) to any of these factors, fuel consumption was significantly (P = 0.021) reduced by grazing, rate of spread was faster in head fire (P = 0.012), and flame length was shorter in head fire than back fire (P = 0.044). The average maximum temperature was higher (P < 0.05) on non-grazed plots, on plots dominated by annual grasses, on plots subjected to head fire, and at the soil surface. Lethal temperature residence time showed a nearly similar trend to fire temperature. Wind speed and total fuel load were best predictors of fire behaviour parameters (R2 ranging from 0.557 to 0.862). It can be concluded that grazing could be used as a management tool to modify fire behaviour, back fire should be carried out during prescribed burning to lower fire severity, and the fire behaviour models can be employed to guide prescribed early fire in the study area.


2016 ◽  
Vol 25 (11) ◽  
pp. 1193 ◽  
Author(s):  
Liubov Volkova ◽  
Andrew L. Sullivan ◽  
Stephen H. Roxburgh ◽  
Christopher J. Weston

Fire managers around the world commonly use visual assessment of forest fuels to aid prediction of fire behaviour and plan for hazard reduction burning. In Australia, fuel hazard assessment guides also allow conversion of visual assessments to indicative fuel loads, which is essential for some rate of spread models and calculation of fireline intensity or emissions. The strength of correlation between fuel hazard and destructively sampled (directly measured) fuel load was tested using a comprehensive dataset of >500 points from across a range of eucalypt forests in Australia. Overall, there was poor correlation between the assigned fuel hazard rating and measured biomass for surface, near-surface and elevated fuel components, with a clear tendency for these systems to under-predict fuel load at low hazard ratings, and over-predict it at high hazard ratings. Visual assessment of surface fuels was not statistically different from a random allocation of hazard level. The considerable overlap in fuel load between hazard ratings at higher ranges suggests the need to reduce the number of hazard classes to provide clearer differentiation of fuel hazard. To accurately assess forest fuel condition, improvements in fuel hazard descriptions and calibration of visual assessment with destructively measured fuels is essential.


Sign in / Sign up

Export Citation Format

Share Document