Contemporary fire regimes of northern Australia, 1997 - 2001: change since Aboriginal occupancy, challenges for sustainable management

2003 ◽  
Vol 12 (4) ◽  
pp. 283 ◽  
Author(s):  
Jeremy Russell-Smith ◽  
Cameron Yates ◽  
Andrew Edwards ◽  
Grant E. Allan ◽  
Garry D. Cook ◽  
...  

Considerable research has been undertaken over the past two decades to apply remote sensing to the study of fire regimes across the savannas of northern Australia. This work has focused on two spatial scales of imagery resolution: coarse-resolution NOAA-AVHRR imagery for savanna-wide assessments both of the daily distribution of fires ('hot spots'), and cumulative mapping of burnt areas ('fire-scars') over the annual cycle; and fine-resolution Landsat imagery for undertaking detailed assessments of regional fire regimes. Importantly, substantial effort has been given to the validation of fire mapping products at both scales of resolution. At the savanna-wide scale, fire mapping activities have established that: (1) contrary to recent perception, from a national perspective the great majority of burning in any one year typically occurs in the tropical savannas; (2) the distribution of burning across the savannas is very uneven, occurring mostly in sparsely settled, higher rainfall, northern coastal and subcoastal regions (north-west Kimberley, Top End of the Northern Territory, around the Gulf of Carpentaria) across a variety of major land uses (pastoral, conservation, indigenous); whereas (3) limited burning is undertaken in regions with productive soils supporting more intensive pastoral management, particularly in Queensland; and (4) on a seasonal basis, most burning occurs in the latter half of the dry season, typically as uncontrolled wildfire. Decadal fine-resolution fire histories have also been assembled from multi-scene Landsat imagery for a number of fire-prone large properties (e.g. Kakadu and Nitmiluk National Parks) and local regions (e.g. Sturt Plateau and Victoria River District, Northern Territory). These studies have facilitated more refined description of various fire regime parameters (fire extent, seasonality, frequency, interval, patchiness) and, as dealt with elsewhere in this special issue, associated ecological assessments. This paper focuses firstly on the patterning of contemporary fire regimes across the savanna landscapes of northern Australia, and then addresses the implications of these data for our understanding of changes in fire regime since Aboriginal occupancy, and implications of contemporary patterns on biodiversity and emerging greenhouse issues.

1991 ◽  
Vol 18 (5) ◽  
pp. 501 ◽  
Author(s):  
S Ingleby

Past and present distributions of Lagorchestes conspicillatus were compared using data from museums, explorers' records and from recent field surveys. These data indicated that L. conspicillatus has declined in distribution and abundance during the last century. This species is now rare in the Pilbara and Kimberley regions of Western Australia. It is moderately common between latitudes 16� and 18�S in central and eastern Northern Territory, and its range extends north to around 12�S in Arnhem Land. However, the southern limits of its range in the Northern Territory have contracted northward by over 200 km and it is rarely recorded below 21�S. L. conspicillatus remains widespread in Queensland although its numbers in several areas appear to have declined in the last 10-15 years. The status of L. conspicillatus should be regarded as vulnerable. Most of its preferred habitats are currently under pastoral lease and at risk of alteration by introduced herbivores or clearing. Unfavourable fire regimes and feral animals may also pose a threat to its survival in some areas. Habitats suitable for L. conspicillatus are very poorly represented in National Parks throughout northern Australia and this situation should be rectified.


2001 ◽  
Vol 10 (1) ◽  
pp. 79 ◽  
Author(s):  
A. Edwards ◽  
P. Hauser ◽  
M. Anderson ◽  
J. McCartney ◽  
M. Armstrong ◽  
...  

Fires burn vast areas of the monsoonal savannas of northern Australia each year. This paper describes the contemporary fire regimes of two ecologically similar, relatively large national parks (Litchfield—1464 km2; Nitmiluk—2924 km2) in the Top End of the Northern Territory, over 8 and 9 years, respectively. Fire histories for both parks were derived from interpretation of LANDSAT TM imagery, supplemented with NOAA-AVHRR for cloudy periods at the end of the 7-month dry season (c. April–Oct). Data concerning seasonality, extent and frequency of burning were analysed with respect to digital coverages for the park as a whole, landscape units, vegetation types, infrastructure and tenure boundaries. Ground-truth data established that interpreted accuracy overall, for 2 assessment years, ranged between 82 and 91% for both parks. Over 50% of Litchfield and 40% of Nitmiluk was burnt on average over this period, with Litchfield being burnt substantially in the earlier, cooler, and moister, dry season, and Nitmiluk mostly in the parched late dry season, after August. On both parks the current frequency of burning in at least low open woodland / heath habitats is ecologically unsustainable. Both parks are prone to extensive fire incursions. The data support earlier regional assessments that the average fire return interval is around 2 years in at least some areas of northern Australia. Nevertheless, comparison of contemporary fire regimes operating in three major regional national parks shows distinct differences, particularly with respect to the extent and seasonality (hence intensity) of burning in relation to different landscape components. Management implications are considered in discussion.


2003 ◽  
Vol 12 (4) ◽  
pp. 349 ◽  
Author(s):  
Cameron Yates ◽  
Jeremy Russell-Smith

The fire-prone savannas of northern Australia comprise a matrix of mostly fire-resilient vegetation types, with embedded fire-sensitive species and communities particularly in rugged sandstone habitats. This paper addresses the assessment of fire-sensitivity at the landscape scale, drawing on detailed fire history and vegetation data assembled for one large property of 9100�km2, Bradshaw Station in the Top End of the Northern Territory, Australia. We describe (1) the contemporary fire regime for Bradshaw Station for a 10 year period; (2) the distribution and status of 'fire sensitive' vegetation; and (3) an assessment of fire-sensitivity at the landscape scale. Fire-sensitive species (FSS) were defined as obligate seeder species with minimum maturation periods of at least 3 years. The recent fire history for Bradshaw Station was derived from the interpretation of fine resolution Landsat MSS and Landsat TM imagery, supplemented with mapping from coarse resolution NOAA-AVHRR imagery where cloud had obstructed the use of Landsat images late in the fire season (typically October–November). Validation assessments of fire mapping accuracy were conducted in 1998 and 1999. On average 40% of Bradshaw burnt annually with about half of this, 22%, occurring after August (Late Dry Season LDS), and 65% of the property burnt 4 or more times, over the 10 year period; 89% of Bradshaw Station had a minimum fire return interval of less than 3 years in the study period. The derived fire seasonality, frequency and return interval data were assessed with respect to landscape units (landsystems). The largest landsystem, Pinkerton (51%, mostly sandstone) was burnt 41% on average, with about 70% burnt four times or more, over the 10 year period. Assessment of the fire-sensitivity of individual species was undertaken with reference to data assembled for 345 vegetation plots, herbarium records, and an aerial survey of the distribution of the long-lived obligate-seeder tree species Callitris intratropica. A unique list of 1310 plant species was attributed with regenerative characteristics (i.e. habit, perenniality, resprouting capability, time to seed maturation). The great majority of FSS species were restricted to rugged sandstone landforms. The approach has wider application for assessing landscape fire-sensitivity and associated landscape health in savanna landscapes in northern Australia, and elsewhere.


1999 ◽  
Vol 21 (1) ◽  
pp. 39 ◽  
Author(s):  
AB Craig

This paper examines a range of environmental, research and practical issues affecting fire management of pastoral lands in the southern part of the Kimberley region in Western Australia. Although spinifex grasslands dominate most leases, smaller areas of more productive pastures are crucially important to many enterprises. There is a lack of local documentation of burning practices during traditional Aboriginal occupation; general features of the fire regime at that time can be suggested on the basis of information from other inland areas. Definition of current tire regimes is improving through interpretation of NOAA-AVHRR satellite imagery. Irregular extensive wildfires appear to dominate, although this should be confirmed by further accumulation, validation and analysis of fire history data. While these fires cause ma,jor difficulties. controlled burn~ng is a necessary part of station management. Although general management guidelines have been published. local research into tire-grazing effects has been very limited. For spinifex pastures, reconimendations are generally consistent with those applying elsewhere in northern Australia. They favour periodic burning of mature spinifex late in the year, before or shortly after the arrival of the first rains, with deferment of grazing. At that time. days of high fire danger may still be expected and prediction of fire behaviour is critical to burning decisions. Early dry-season burning is also required for creating protective tire breaks and to prepare for burning later in the year. Further development of tools for predicting fire behaviour, suited to the discontinuous fuels characteristic of the area, would be warranted. A range of questions concerning the timing and spatial pattern of burning, control of post-fire grazing, and the economics of fire management, should be addressed as resources permit. This can be done through a combination of opportunistic studies, modelling and documentation of local experience. The development of an expert system should be considered to assist in planning and conducting burning activities. Key words: Kimberley, fire regimes, fire management, pastoralism, spinifex


2009 ◽  
Vol 18 (2) ◽  
pp. 127 ◽  
Author(s):  
Andrew C. Edwards ◽  
Jeremy Russell-Smith

The paper examines the application of the ecological thresholds concept to fire management issues concerning fire-sensitive vegetation types associated with the remote, biodiversity-rich, sandstone Arnhem Plateau, in western Arnhem Land, monsoonal northern Australia. In the absence of detailed assessments of fire regime impacts on component biota such as exist for adjoining Nitmiluk and World Heritage Kakadu National Parks, the paper builds on validated 16-year fire history and vegetation structural mapping products derived principally from Landsat-scale imagery, to apply critical ecological thresholds criteria as defined by fire regime parameters for assessing the status of fire-sensitive habitat and species elements. Assembled data indicate that the 24 000 km2 study region today experiences fire regimes characterised generally by high annual frequencies (mean = 36.6%) of large (>10 km2) fires that occur mostly in the late dry season under severe fire-weather conditions. Collectively, such conditions substantially exceed defined ecological thresholds for significant proportions of fire-sensitive indicator rain forest and heath vegetation types, and the long-lived obligate seeder conifer tree species, Callitris intratropica. Thresholds criteria are recognised as an effective tool for informing ecological fire management in a variety of geographic settings.


2010 ◽  
Vol 58 (4) ◽  
pp. 300 ◽  
Author(s):  
Jeremy Russell-Smith ◽  
Cameron P. Yates ◽  
Chris Brock ◽  
Vanessa C. Westcott

Few data are available concerning contemporary fire regimes and the responses of fire interval-sensitive vegetation types in semiarid woodland savanna landscapes of northern Australia. For a 10 300 km2 semiarid portion of Gregory National Park, in the present paper we describe (1) components of the contemporary fire regime for 1998–2008, on the basis of assessments derived from Landsat and MODIS imagery, (2) for the same period, the population dynamics, and characteristic fine-fuel loads associated with Acacia shirleyi Maiden (lancewood), an obligate seeder tree species occurring in dense monodominant stands, and (3) the fire responses of woody species, and fine-fuel dynamics, sampled in 41 plots comprising shrubby open-woodland over spinifex hummock grassland. While rain-year (July–June) rainfall was consistently reliable over the study period, annual fire extent fluctuated markedly, with an average of 29% being fire affected, mostly in the latter part of the year under relatively harsh fire-climate conditions. Collectively, such conditions facilitated short fire-return intervals, with 30% of the study area experiencing a repeat fire within 1 year, and 80% experiencing a repeat fire within 3 years. Fine fuels associated with the interior of lancewood thickets were characteristically small (<1 t ha–1). Fine fuels dominated by spinifex (Triodia spp.) were found to accumulate at rates equivalent to those observed under higher-rainfall conditions. Stand boundaries of A. shirleyi faired poorly under prevailing fire regimes over the study period; in 16 plots, juvenile density declined 62%, and adult stem density and basal area declined by 53% and 40%, respectively. Although the maturation (primary juvenile) period of A. shirleyi is incompletely known, assembled growth rate and phenology data indicated that it is typically >10 years. Of 133 woody species sampled, all trees (n = 26), with the exception of A. shirleyi, were resprouters, and 58% of all shrub species (n = 105) were obligate seeders, with observed primary juvenile periods <5 years. Assembled data generally supported observations made from other northern Australian studies concerning the responses of fire-sensitive woody taxa in rugged, sandstone-derived landscapes, and illustrated the enormous challenges facing ecologically sustainable fire management in such settings. Contemporary fire regimes of Gregory National Park are not ecologically sustainable.


2007 ◽  
Vol 13 (3) ◽  
pp. 177 ◽  
Author(s):  
Owen Price ◽  
Bryan Baker

A nine year fire history for the Darwin region was created from Landsat imagery, and examined to describe the fire regime across the region. 43% of the region burned each year, and approximately one quarter of the fires occur in the late dry season, which is lower than most other studied areas. Freehold land, which covers 35% of the greater Darwin region, has 20% long-unburnt land. In contrast, most publicly owned and Aboriginal owned land has very high fire frequency (60-70% per year), and only 5% long unburnt. It seems that much of the Freehold land is managed for fire suppression, while the common land is burnt either to protect the Freehold or by pyromaniacs. Generalized Linear Modelling among a random sample of points revealed that fire frequency is higher among large blocks of savannah vegetation, and at greater distances from mangrove vegetation and roads. This suggests that various kinds of fire break can be used to manage fire in the region. The overall fire frequency in the Darwin region is probably too high and is having a negative impact on wildlife. However, the relatively low proportion of late dry season fires means the regime is probably not as bad as in some other regions. The management of fire is ad-hoc and strongly influenced by tenure. There needs to be a clear statement of regional fire targets and a strategy to achieve these. Continuation of the fire mapping is an essential component of achieving the targets.


1981 ◽  
Vol 8 (3) ◽  
pp. 207-215 ◽  
Author(s):  
J. E. Gardner ◽  
J. G. Nelson

At the very general level, the aim of this paper is to compare the interaction of national parks and native peoples in Northern Canada (Yukon Territory), Alaska, and the Northern Territory of Australia. Currently these areas are subject to increasing land-use pressures from mining, industrial development, the creation of national parks and related reserves, and native attempts to maintain traditional wildlife and renewable resource use. The study focuses on the interactions between national parks and native peoples on the premise that experiences can be compared and problems encountered in one area but possibly avoided in another.The study begins by briefly describing native land-use issues, land-rights arrangements, and organizations, in the Yukon Territory, central Alaska, and Northern Australia. The national park agencies are described, compared, and shown to differ considerably in institutional character, field of management, control of land, and external links with interest groups such as native peoples. Case-studies of the national parks etc. named Kluane (Yukon), Gates of the Arctic (Alaska), and Kakadu (Northern Territory of Australia), are presented to provide more details on similarities and differences in planning, types of tenure, native subsistence activities, and other factors.In the Yukon Territory, neither the national parks agency nor the native people are highly motivated to interact. In contrast, the park agencies and native people in Alaska and the Northern Territory of Australia recognize mutual benefits from interaction—largely as a result of legislation and policies which encourage cooperation. Native involvement officers now facilitate coordination in the Yukon and Alaska. Park agency native employment programmes are proceeding in all three ‘hinterlands’, while native people can own land on which national parks are established in Alaska and the Australian Northern Territory. Only in Australia are native people known to be directly involved in upperlevel national park management. Potential limitations on native subsistence and associated use of national parks range from moderate to severe, and are only defined clearly in Alaska. Lack of definition leads to confusion in deciding upon native use, while exceedingly precise definition precludes flexibility at the park level.A number of aids to a more mutually satisfactory interaction can be identified. One is motivation, or recognition by both parties that there are advantages to consultation and cooperation. Another, not yet achieved in the Yukon, is a land-claims settlement, stating the legislated rights of native peoples in the ‘hinterlands’ and giving them a land-holding and bargaining status which is comparable with that of government agencies. A third aid is comprehensive systematic and regional planning efforts involving opportunities for informed input from all affected parties. Such planning would provide a forum for consideration of a variety of interests, including national parks and native peoples. Finally, satisfactory interaction on the park site could be assisted by clear yet flexible means of deciding upon acceptable native use of parkland, the conservation of wildlife, and associated economic and cultural factors.


2015 ◽  
Vol 24 (5) ◽  
pp. 712 ◽  
Author(s):  
Michael J. Lawes ◽  
Brett P. Murphy ◽  
Alaric Fisher ◽  
John C. Z. Woinarski ◽  
Andrew C. Edwards ◽  
...  

Small mammal (<2 kg) numbers have declined dramatically in northern Australia in recent decades. Fire regimes, characterised by frequent, extensive, late-season wildfires, are implicated in this decline. Here, we compare the effect of fire extent, in conjunction with fire frequency, season and spatial heterogeneity (patchiness) of the burnt area, on mammal declines in Kakadu National Park over a recent decadal period. Fire extent – an index incorporating fire size and fire frequency – was the best predictor of mammal declines, and was superior to the proportion of the surrounding area burnt and fire patchiness. Point-based fire frequency, a commonly used index for characterising fire effects, was a weak predictor of declines. Small-scale burns affected small mammals least of all. Crucially, the most important aspects of fire regimes that are associated with declines are spatial ones; extensive fires (at scales larger than the home ranges of small mammals) are the most detrimental, indicating that small mammals may not easily escape the effects of large and less patchy fires. Notwithstanding considerable management effort, the current fire regime in this large conservation reserve is detrimental to the native mammal fauna, and more targeted management is required to reduce fire size.


2009 ◽  
Vol 18 (6) ◽  
pp. 631 ◽  
Author(s):  
Aaron C. Greenville ◽  
Chris R. Dickman ◽  
Glenda M. Wardle ◽  
Mike Letnic

Implementing appropriate fire regimes has become an increasingly important objective for biodiversity conservation programs. Here, we used Landsat imagery from 1972 to 2003 to describe the recent fire history and current wildfire regime of the north-eastern Simpson Desert, Australia, within each of the region’s seven main vegetation classes. We then explored the relationship between antecedent rainfall and El Niño–Southern Oscillation with wildfire area. Wildfires were recorded in 11 years between 1972 and 2003, each differing in size. In 1975, the largest wildfire was recorded, burning 55% (4561 km2) of the study region. Smaller fires in the intervening years burnt areas that had mostly escaped the 1975 fire, until 2002, when 31% (2544 km2) of the study region burnt again. Wildfires burnt disproportionally more spinifex (Triodia basedowii) than any other vegetation class. A total of 49% of the study area has burnt once since 1972 and 20% has burnt twice. Less than 1% has burnt three times and 36% has remained unaffected by wildfire since 1972. The mean minimum fire return interval was 26 years. Two years of cumulative rainfall before a fire event, rainfall during the year of a fire event, and the mean Southern Oscillation Index from June to November in the year before a fire event could together be used to successfully predict wildfire area. We use these findings to describe the current fire regime.


Sign in / Sign up

Export Citation Format

Share Document