Fire regimes and their correlates in the Darwin region of northern Australia

2007 ◽  
Vol 13 (3) ◽  
pp. 177 ◽  
Author(s):  
Owen Price ◽  
Bryan Baker

A nine year fire history for the Darwin region was created from Landsat imagery, and examined to describe the fire regime across the region. 43% of the region burned each year, and approximately one quarter of the fires occur in the late dry season, which is lower than most other studied areas. Freehold land, which covers 35% of the greater Darwin region, has 20% long-unburnt land. In contrast, most publicly owned and Aboriginal owned land has very high fire frequency (60-70% per year), and only 5% long unburnt. It seems that much of the Freehold land is managed for fire suppression, while the common land is burnt either to protect the Freehold or by pyromaniacs. Generalized Linear Modelling among a random sample of points revealed that fire frequency is higher among large blocks of savannah vegetation, and at greater distances from mangrove vegetation and roads. This suggests that various kinds of fire break can be used to manage fire in the region. The overall fire frequency in the Darwin region is probably too high and is having a negative impact on wildlife. However, the relatively low proportion of late dry season fires means the regime is probably not as bad as in some other regions. The management of fire is ad-hoc and strongly influenced by tenure. There needs to be a clear statement of regional fire targets and a strategy to achieve these. Continuation of the fire mapping is an essential component of achieving the targets.

2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.


2012 ◽  
Vol 21 (3) ◽  
pp. 297 ◽  
Author(s):  
Owen F. Price ◽  
Jeremy Russell-Smith ◽  
Felicity Watt

Fire regimes in many north Australian savanna regions are today characterised by frequent wildfires occurring in the latter part of the 7-month dry season. A fire management program instigated from 2005 over 24 000 km2 of biodiversity-rich Western Arnhem Land aims to reduce the area and severity of late dry-season fires, and associated greenhouse gas emissions, through targeted early dry-season prescribed burning. This study used fire history mapping derived mostly from Landsat imagery over the period 1990–2009 and statistical modelling to quantify the mitigation of late dry-season wildfire through prescribed burning. From 2005, there has been a reduction in mean annual total proportion burnt (from 38 to 30%), and particularly of late dry-season fires (from 29 to 12.5%). The slope of the relationship between the proportion of early-season prescribed fire and subsequent late dry-season wildfire was ~–1. This means that imposing prescribed early dry-season burning can substantially reduce late dry-season fire area, by direct one-to-one replacement. There is some evidence that the spatially strategic program has achieved even better mitigation than this. The observed reduction in late dry-season fire without concomitant increase in overall area burnt has important ecological and greenhouse gas emissions implications. This efficient mitigation of wildfire contrasts markedly with observations reported from temperate fire-prone forested systems.


2003 ◽  
Vol 12 (4) ◽  
pp. 309 ◽  
Author(s):  
Robert E. Keane ◽  
Geoffrey J. Cary ◽  
Russell Parsons

Spatial depictions of fire regimes are indispensable to fire management because they portray important characteristics of wildland fire, such as severity, intensity, and pattern, across a landscape that serves as important reference for future treatment activities. However, spatially explicit fire regime maps are difficult and costly to create requiring extensive expertise in fire history sampling, multivariate statistics, remotely sensed image classification, fire behaviour and effects, fuel dynamics, landscape ecology, simulation modelling, and geographical information systems (GIS). This paper first compares three common strategies for predicting fire regimes (classification, empirical, and simulation) using a 51�000�ha landscape in the Selway-Bitterroot Wilderness Area of Montana, USA. Simulation modelling is identified as the best overall strategy with respect to developing temporally deep spatial fire patterns, but it has limitations. To illustrate these problems, we performed three simulation experiments using the LANDSUM spatial model to determine the relative importance of (1) simulation time span; (2) fire frequency parameters; and (3) fire size parameters on the simulation of landscape fire return interval. The model used to simulate fire regimes is also very important, so we compared two spatially explicit landscape fire succession models (LANDSUM and FIRESCAPE) to demonstrate differences between model predictions and limitations of each on a neutral landscape. FIRESCAPE was developed for simulating fire regimes in eucalypt forests of south-eastern Australia. Finally, challenges for future simulation and fire regime research are presented including field data, scale, fire regime variability, map obsolescence, and classification resolution.


2021 ◽  
pp. 205301962110446
Author(s):  
Matthew Adesanya Adeleye ◽  
Simon Edward Connor ◽  
Simon Graeme Haberle ◽  
Annika Herbert ◽  
Josephine Brown

The rapid increase in severe wildfires in many parts of the world, especially in temperate systems, requires urgent attention to reduce fires’ catastrophic impacts on human lives, livelihoods, health and economy. Of particular concern is southeast Australia, which harbours one of the most flammable vegetation types on Earth. While previous studies suggest climate and European activities drove changes in southeast Australian fire regimes in the last 200 years, no study has quantitatively tested the relative roles of these drivers. Here, we use a Generalized Linear Modelling to identify the major driver(s) of fire regime change in the southeast Australian mainland during and prior to European colonization. We use multiple charcoal and pollen records across the region and quantitatively compare fire history to records of climate and vegetation change. Results show low levels of biomass burned before colonization, when landscapes where under Indigenous management, even under variable climates. Biomass burned increased markedly due to vegetation/land-use change after colonization and a major decline in regional precipitation about 100 years later. We conclude that Indigenous-maintained open vegetation minimized the amount of biomass burned prior to colonization, while European-suppression of Indigenous land management has amplified biomass accumulation and fuel connectivity in southeast Australian forests since colonization. While climate change remains a major challenge for fire mitigation, implementation of a management approach similar to the pre-colonial period is suggested to ameliorate the risk of future catastrophic fires in the region.


2009 ◽  
Vol 18 (6) ◽  
pp. 631 ◽  
Author(s):  
Aaron C. Greenville ◽  
Chris R. Dickman ◽  
Glenda M. Wardle ◽  
Mike Letnic

Implementing appropriate fire regimes has become an increasingly important objective for biodiversity conservation programs. Here, we used Landsat imagery from 1972 to 2003 to describe the recent fire history and current wildfire regime of the north-eastern Simpson Desert, Australia, within each of the region’s seven main vegetation classes. We then explored the relationship between antecedent rainfall and El Niño–Southern Oscillation with wildfire area. Wildfires were recorded in 11 years between 1972 and 2003, each differing in size. In 1975, the largest wildfire was recorded, burning 55% (4561 km2) of the study region. Smaller fires in the intervening years burnt areas that had mostly escaped the 1975 fire, until 2002, when 31% (2544 km2) of the study region burnt again. Wildfires burnt disproportionally more spinifex (Triodia basedowii) than any other vegetation class. A total of 49% of the study area has burnt once since 1972 and 20% has burnt twice. Less than 1% has burnt three times and 36% has remained unaffected by wildfire since 1972. The mean minimum fire return interval was 26 years. Two years of cumulative rainfall before a fire event, rainfall during the year of a fire event, and the mean Southern Oscillation Index from June to November in the year before a fire event could together be used to successfully predict wildfire area. We use these findings to describe the current fire regime.


2015 ◽  
Vol 24 (1) ◽  
pp. 59 ◽  
Author(s):  
Emma E. Burgess ◽  
Patrick Moss ◽  
Murray Haseler ◽  
Martine Maron

The post-fire response of vegetation reflects not only a single fire event but is the result of cumulative effects of previous fires in the landscape. For effective ecological fire management there is a need to better understand the relationship between different fire regimes and vegetation structure. The study investigated how different fire regimes affect stand structure and composition in subtropical eucalypt woodlands of central Queensland. We found that fire history category (i.e. specific combinations of time since fire, fire frequency and season of last burn) strongly influenced richness and abundance of species categorised as mid-storey trees and those individuals currently in the mid-level strata. Time since fire and fire frequency appeared to have the strongest influence. A longer time since fire (>4 years since last burn), combined with infrequent fires (<2 fires in 12 year period) appeared to promote a dense mid-storey with the opposite conditions (<4 years since last burn; >2 fires in 12 year period) promoting more-open woodlands. Consideration of these combined fire regime attributes will allow fire managers to plan for a particular range of fire-mediated patches to maintain the desired diversity of vegetation structures.


2009 ◽  
Vol 18 (1) ◽  
pp. 61 ◽  
Author(s):  
Louis P. Elliott ◽  
Donald C. Franklin ◽  
David M. J. S. Bowman

In savanna environments, fire and grass are inextricably linked by feedback loops. In the Darwin area of northern Australia, flammable tall annual grasses of the genus Sarga (previously Sorghum1) have been implicated in a savanna fire-cycle. We examined the relationship between fire history, the grass layer and distance from settlement using LANDSAT images and plot-based surveys. Areas more than 500 m from settlement were burnt almost twice as often, the additional fires being concentrated late in the dry season and in areas dominated by annual Sarga and even more so where dominated by short annual grasses. Grass cover was a stronger correlate of fire frequency than grass biomass, the two showing a non-linear relationship. Sites dominated by short annual grasses had similar cover to, but markedly lower biomass than those dominated by annual Sarga or perennial grasses. Our results reflect the success of fire suppression in the vicinity of settlements, but little effective management of late dry-season wildfires in remoter areas. We evaluate several hypotheses for the association of frequent fire with annual grasses regardless of their growth form and conclude that fuel connectivity and possibly other fuel characteristics are key issues worthy of further investigation.


2005 ◽  
Vol 14 (3) ◽  
pp. 285 ◽  
Author(s):  
Jon E. Keeley

The San Francisco East Bay landscape is a rich mosaic of grasslands, shrublands and woodlands that is experiencing losses of grassland due to colonization by shrubs and succession towards woodland associations. The instability of these grasslands is apparently due to their disturbance-dependent nature coupled with 20th century changes in fire and grazing activity. This study uses fire history records to determine the potential for fire in this region and for evidence of changes in the second half of the 20th century that would account for shrubland expansion. This region has a largely anthropogenic fire regime with no lightning-ignited fires in most years. Fire suppression policy has not excluded fire from this region; however, it has been effective at maintaining roughly similar burning levels in the face of increasing anthropogenic fires, and effective at decreasing the size of fires. Fire frequency parallels increasing population growth until the latter part of the 20th century, when it reached a plateau. Fire does not appear to have been a major factor in the shrub colonization of grasslands, and cessation of grazing is a more likely immediate cause. Because grasslands are not under strong edaphic control, rather their distribution appears to be disturbance-dependent, and natural lightning ignitions are rare in the region, I hypothesize that, before the entrance of people into the region, grasslands were of limited extent. Native Americans played a major role in creation of grasslands through repeated burning and these disturbance-dependent grasslands were maintained by early European settlers through overstocking of these range lands with cattle and sheep. Twentieth century reduction in grazing, coupled with a lack of natural fires and effective suppression of anthropogenic fires, have acted in concert to favor shrubland expansion.


1988 ◽  
Vol 30 (1) ◽  
pp. 81-91 ◽  
Author(s):  
James S. Clark

Results of stratigraphic charcoal analysis from thin sections of varved lake sediments have been compared with fire scars on red pine trees in northwestern Minnesota to determine if charcoal data accurately reflect fire regimes. Pollen and opaque-spherule analyses were completed from a short core to confirm that laminations were annual over the last 350 yr. A good correspondence was found between fossil-charcoal and fire-scar data. Individual fires could be identified as specific peaks in the charcoal curves, and times of reduced fire frequency were reflected in the charcoal data. Charcoal was absent during the fire-suppression era from 1920 A.D. to the present. Distinct charcoal maxima from 1864 to 1920 occurred at times of fire within the lake catchment. Fire was less frequent during the 19th century, and charcoal was substantially less abundant. Fire was frequent from 1760 to 1815, and charcoal was abundant continuously. Fire scars and fossil charcoal indicate that fires did not occur during 1730–1750 and 1670–1700. Several fires occurred from 1640 to 1670 and 1700 to 1730. Charcoal counted from pollen preparations in the area generally do not show this changing fire regime. Simulated “sampling” of the thin-section data in a fashion comparable to pollen-slide methods suggests that sampling alone is not sufficient to account for differences between the two methods. Integrating annual charcoal values in this fashion still produced much higher resolution than the pollen-slide method, and the postfire suppression decline of charcoal characteristic of my method (but not of pollen slides) is still evident. Consideration of the differences in size of fragments counted by the two methods is necessary to explain charcoal representation in lake sediments.


1990 ◽  
Vol 20 (2) ◽  
pp. 219-232 ◽  
Author(s):  
James S. Clark

Long-term fire, climate, and vegetation data were used together with simulation models to estimate the effects of 20th century climate change and fire suppression on fire regime and organic-matter accumulation in mixed-conifer stands of Itasca State Park, northwestern Minnesota. Spatial and temporal patterns of fire occurrence and forest composition over the last 150 years determined by stratigraphic charcoal, fire-scar, tree-ring, and pollen analyses in separate studies provide evidence for vegetation and fire relationships. Water balances constructed from temperature and precipitation data collected since 1840 were used to model fire probability and intensity of burn before fire suppression which began in 1910. Existing patterns of biomass accumulation in forest-floor, herb, shrub, and tree components were compared with fire history and topographic variability to provide a spatial perspective on fire effects. Simulation models used these relationships to estimate (i) how accumulation of organic matter had changed through the past under the different fire regimes that prevailed on different topographic aspects, (ii) the changes brought about by fire suppression in 1910, and (iii) the fire regimes and their effects that would have prevailed since fire suppression with the warm–dry climate of the 20th century. Humus, litter, shrubs, and herb cover were less abundant and more variable spatially and temporally before fire suppression. Spatial variability in forest-floor organic matter, which resulted from different fire frequencies in different vegetation and topographic settings before fire suppression, was largely gone by 1920 as a result of fire suppression. Had fire suppression not been instituted in 1910, fire frequency would have increased by 20–40% in the 20th century because of warmer and drier conditions. Forest-floor oganic matter would have been largely depleted by frequent and severe fires exposing mineral soils, particularly during the drought years of the 1930s. Herb biomass would have increased, shrubs would have been more variable, and tree seedling establishment would have been substantially altered. Time required for buildup of fuels limits the extent to which increased moisture deficits increase fire frequency.


Sign in / Sign up

Export Citation Format

Share Document