Effects of fuel load and moisture content on fire behaviour and heating in masticated litter-dominated fuels

2013 ◽  
Vol 22 (4) ◽  
pp. 440 ◽  
Author(s):  
Jesse K. Kreye ◽  
Leda N. Kobziar ◽  
Wayne C. Zipperer

Mechanical fuels treatments are being used in fire-prone ecosystems where fuel loading poses a hazard, yet little research elucidating subsequent fire behaviour exists, especially in litter-dominated fuelbeds. To address this deficiency, we burned constructed fuelbeds from masticated sites in pine flatwoods forests in northern Florida with palmetto-dominated understoreys and examined the effects of fuel load and fuel moisture content (FMC) on fire behaviour. Flame lengths (49–140 cm) and fireline intensity (183–773 kJ m–1 s–1) increased with loading (10–30 Mg ha–1) and were reduced by 40 and 47% with increasing FMC from 9 to 13%. Rate of spread was not influenced by fuel load, but doubled under drier FMC. Fuel consumption was >90% for all burns. Soil temperatures were influenced by both fuel load and FMC, but never reached lethal temperatures (60°C). However, temperatures of thermocouple probes placed at the fuelbed surface reached 274–503°C. Probe maximum temperature and duration at temperatures ≥60°C (9.5–20.0°C min) both increased with fuel load, but were unaffected by FMC. The fire behaviour observed in these unique litter-dominated fuelbeds provides additional insight into the burning characteristics of masticated fuels in general.

1995 ◽  
Vol 5 (1) ◽  
pp. 1 ◽  
Author(s):  
D Gillon ◽  
V Gomendy ◽  
C Houssard ◽  
J Marechal ◽  
JC Valette

The aim of this study was to assess the effects on combustion characteristics, and their consequences on nutrient losses, of (1) the change in load and packing ratio of the fuel bed, and (2) the change in fuel moisture content. Eighty-one experimental burns were carried out, on a test bench in the laboratory; the fuel was composed of needles and twigs of Pinus pinaster. Two levels of fuel load an dpacking ratio (8t ha-1 needles, packing ratio of 0.040; and 16t ha-1 twigs and needles, packing ratio of 0.066) were compared at constant moisture content (6%); and four levels of moisture content(6%, 12%, 24% and 30% dry weight) were compared at constant fuel load (8t ha-1 needles). At constant moisture content, an increase in the load and packing ratio of the fuel bed led to an increase in the height of flames and in the maximum temperature 25 cm above the fuel bed, in the duration of the rise in temperatures within the fuel, and in the fireline intensity. Conversely, the rate of fire spread decreased. At constant fuel load, an increase in the moisture content of the fuel led to a decrease in the rate of fire spread, in the flame height and the maximum temperature 25 cm above the fuel bed, and in the fireline intensity. In contrast, the maximum temperatures reached within the fuel, when the flaming front was continuous, did not significantly change with varying fuel loads or fuel moisture contents. The percentage fuel consumption was always high, more than 80%, but it significantly decreased with increasing fuel load and packing ratio and with increasing moisture content. Total losses of N, S, and K significantly decreased with increasing fuel load and packing ratio, with increasing moisture content and with decreasing percentage fuel consumption. Losses in P only significantly decreased with increasing fuel load and packing ratio. Losses in Mg and Ca were not significantly affected by fuel load, moisture content. or percentage consumption. An attempt was made to separate volatile from particulate losses, based on the assumption that all the losses of Ca were in particulate form. Whereas losses in particulate form remained relatively constant, losses of nutrients in volatile form seem to have been related to the percentage fuel consumption. Even if these experimental burns were of low intensity (40 to 56 kW m-1), their impact, in terms of lethal temperatures and nutrient losses, was not negligible, particularly for N and P. The increasing fireline intensity with increasing fuel load was not accompanied by an enhancement in the proportion of nutrient losses. In the same way, the strong decrease in fireline intensity with increasing fuel moisture content led only to a slight decrease in some nutrient losses. It was through their effect on the percentage fuel consumption that fuel load or moisture content modified the nutrient losses, particularly volatile losses.


2009 ◽  
Vol 18 (6) ◽  
pp. 698 ◽  
Author(s):  
Paulo M. Fernandes ◽  
Hermínio S. Botelho ◽  
Francisco C. Rego ◽  
Carlos Loureiro

An experimental burning program took place in maritime pine (Pinus pinaster Ait.) stands in Portugal to increase the understanding of surface fire behaviour under mild weather. The spread rate and flame geometry of the forward and backward sections of a line-ignited fire front were measured in 94 plots 10–15 m wide. Measured head fire rate of spread, flame length and Byram’s fire intensity varied respectively in the intervals of 0.3–13.9 m min–1, 0.1–4.2 m and 30–3527 kW m–1. Fire behaviour was modelled through an empirical approach. Rate of forward fire spread was described as a function of surface wind speed, terrain slope, moisture content of fine dead surface fuel, and fuel height, while back fire spread rate was correlated with fuel moisture content and cover of understorey vegetation. Flame dimensions were related to Byram’s fire intensity but relationships with rate of spread and fine dead surface fuel load and moisture are preferred, particularly for the head fire. The equations are expected to be more reliable when wind speed and slope are less than 8 km h–1 and 15°, and when fuel moisture content is higher than 12%. The results offer a quantitative basis for prescribed fire management.


2017 ◽  
Vol 47 (7) ◽  
pp. 883-889 ◽  
Author(s):  
Carlos G. Rossa ◽  
Paulo M. Fernandes

A laboratory experimental program addressing fire spread in fuel beds composed of dead foliage litter and vertically placed quasi-live branches, representative of many natural fuel complexes, was carried out for either still-air or wind conditions. Fuel-bed characteristics, fire spread rate, flame geometry, and fuel consumption were assessed and empirical models for estimating several parameters were developed. Weighted fuel moisture content (18%–163%) provided good estimates of fire-behaviour characteristics and accounted for most of the variation in still-air and wind-driven spread rate (0.1–1.3 m·min−1). When predicting still-air fire spread rate, fuel height was the most relevant fuel-bed structural parameter and fuel type had significant influence, whereas for wind-driven spread, the effect of foliar fuel-bed density was dominant and fuel type became irrelevant. Flame length (0.4–2.2 m) increased from still-air to wind-assisted (8 km·h−1) fire spread, but its height remained constant. The fraction of total fuel load and mean woody fuel diameter consumed by fire were reasonably predicted from weighted fuel moisture content alone, but predictions for the latter variable improved substantially by adding foliar fuel load.


2015 ◽  
Vol 24 (4) ◽  
pp. 443 ◽  
Author(s):  
Wendy R. Anderson ◽  
Miguel G. Cruz ◽  
Paulo M. Fernandes ◽  
Lachlan McCaw ◽  
Jose Antonio Vega ◽  
...  

A shrubland fire behaviour dataset was assembled using data from experimental studies in Australia, New Zealand, Europe and South Africa. The dataset covers a wide range of heathlands and shrubland species associations and vegetation structures. Three models for rate of spread are developed using 2-m wind speed, a wind reduction factor, elevated dead fuel moisture content and either vegetation height (with or without live fuel moisture content) or bulk density. The models are tested against independent data from prescribed fires and wildfires and found to predict fire spread rate within acceptable limits (mean absolute errors varying between 3.5 and 9.1 m min–1). A simple model to predict dead fuel moisture content is evaluated, and an ignition line length correction is proposed. Although the model can be expected to provide robust predictions of rate of spread in a broad range of shrublands, the effects of slope steepness and variation in fuel quantity and composition are yet to be quantified. The model does not predict threshold conditions for continuous fire spread, and future work should focus on identifying fuel and weather factors that control transitions in fire behaviour.


2007 ◽  
Vol 16 (5) ◽  
pp. 531 ◽  
Author(s):  
Patrice Savadogo ◽  
Didier Zida ◽  
Louis Sawadogo ◽  
Daniel Tiveau ◽  
Mulualem Tigabu ◽  
...  

Fuel characteristics, fire behaviour and temperature were studied in relation to grazing, dominant grass type and wind direction in West African savanna–woodland by lighting 32 prescribed early fires. Grazing significantly reduced the vegetation height, total fuel load, and dead and live fuel fractions whereas plots dominated by perennial grasses had higher values for vegetation height, total fuel load and the quantity of live fuel load. Although fire intensity remained insensitive (P > 0.05) to any of these factors, fuel consumption was significantly (P = 0.021) reduced by grazing, rate of spread was faster in head fire (P = 0.012), and flame length was shorter in head fire than back fire (P = 0.044). The average maximum temperature was higher (P < 0.05) on non-grazed plots, on plots dominated by annual grasses, on plots subjected to head fire, and at the soil surface. Lethal temperature residence time showed a nearly similar trend to fire temperature. Wind speed and total fuel load were best predictors of fire behaviour parameters (R2 ranging from 0.557 to 0.862). It can be concluded that grazing could be used as a management tool to modify fire behaviour, back fire should be carried out during prescribed burning to lower fire severity, and the fire behaviour models can be employed to guide prescribed early fire in the study area.


2018 ◽  
Vol 48 (1) ◽  
pp. 105-110
Author(s):  
Jiann C. Yang

A dimensional analysis was performed to correlate the fuel bed fire rate of spread data previously reported in the literature. Under wind condition, six pertinent dimensionless groups were identified, namely dimensionless fire spread rate, dimensionless fuel particle size, fuel moisture content, dimensionless fuel bed depth or dimensionless fuel loading density, dimensionless wind speed, and angle of inclination of fuel bed. Under no-wind condition, five similar dimensionless groups resulted. Given the uncertainties associated with some of the parameters used to estimate the dimensionless groups, the dimensionless correlations using the resulting dimensionless groups correlate the fire rates of spread reasonably well under wind and no-wind conditions.


1997 ◽  
Vol 7 (1) ◽  
pp. 21 ◽  
Author(s):  
FA Albini ◽  
ED Reinhardt

Calibration and testing of a computer simulation of the burning of large woody natural fuels has been presented previously in this journal. This note describes an improved calibration of the model for better prediction of fuel loading reductions. Using the same data as before, fuel consumption predictions are improved substantially by making the area influence factor a function of fuel moisture content.


Fire ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 34
Author(s):  
Anne-Claude Pepin ◽  
Mike Wotton

Parks Canada, in collaboration with Nova Scotia Lands and Forests and Natural Resources Canada, documented shrub fire behaviour in multiple plots burned over two periods: a spring period in June 2014 and a summer period in July 2017. The study area, located within Cape Breton Highlands National Park, comprised fifteen burn units (20 m by 20 m in size). Each unit was ignited by line ignition and burned under a wide range of conditions. Pre-burn fuel characteristics were measured across the site and used to estimate pre-fire fuel load and post-fire fuel consumption. This fuel complex was similar to many flammable shrub types around the world, results show that this shrub fuel type had high elevated fuel loads (3.17 ± 0.84 kg/m2) composed of exposed live and dead stunted black spruce as well as ericaceous shrubs, mainly Kalmia angustifolia (evergreen) and Rhodora canadensis (deciduous). Data show that the dead moisture content in this fuel complex is systematically lower than expected from the traditional relationship between FFMC and moisture content in the Canadian Fire Weather Index System but was statistically correlated with Equilibrium Moisture Content. A significant inverse relationship between bulk density and fire rate of spread was observed as well as a clear seasonal effect between the spring burns and the summer burns, which is likely attributable to the increase in bulk density in the summer. Unlike most shrub research, wind and dead moisture content did not have a statistically significant association with fire spread rates. However, we believe this to be due to noise in wind data and small dataset. Rate of spread as high as 14 m/min and flame lengths over 4 m were recorded under Initial Spread Index values of 6.4 and relative humidity of 54%. A comparison with a number of well-known shrubland spread rate prediction models was made. An aid to operational fire prediction behaviour is proposed, using a fuel type from the Canadian Fire Prediction System (O-1b) and a modified estimate of fuel moisture of the elevated fuel in the fuel complex.


2013 ◽  
Vol 22 (4) ◽  
pp. 428 ◽  
Author(s):  
Holly A. Perryman ◽  
Christopher J. Dugaw ◽  
J. Morgan Varner ◽  
Diane L. Johnson

In spite of considerable effort to predict wildland fire behaviour, the effects of firebrand lift-off, the ignition of resulting spot fires and their effects on fire spread, remain poorly understood. We developed a cellular automata model integrating key mathematical models governing current fire spread models with a recently developed model that estimates firebrand landing patterns. Using our model we simulated a wildfire in an idealised Pinus ponderosa ecosystem. Varying values of wind speed, surface fuel loading, surface fuel moisture content and canopy base height, we investigated two scenarios: (i) the probability of a spot fire igniting beyond fuelbreaks of various widths and (ii) how spot fires directly affect the overall surface fire’s rate of spread. Results were averages across 2500 stochastic simulations. In both scenarios, canopy base height and surface fuel loading had a greater influence than wind speed and surface fuel moisture content. The expected rate of spread with spot fires occurring approached a constant value over time, which ranged between 6 and 931% higher than the predicted surface fire rate of spread. Incorporation of the role of spot fires in wildland fire spread should be an important thrust of future decision-support technologies.


2008 ◽  
Vol 17 (3) ◽  
pp. 380 ◽  
Author(s):  
G. M. Davies ◽  
A. Hamilton ◽  
A. Smith ◽  
C. J. Legg

We present a simple non-destructive technique for assessing fuel load and critical aspects of vegetation structure that play important roles in determining fire behaviour. The method is tested in a Scottish Calluna vulgaris (L.) Hull heathland but could be applied to any vegetation up to ~1 m high. Visual obstruction of a banded measurement stick (the FuelRule) placed vertically through a stand of vegetation is governed by a combination of the height of the vegetation and its density. The vertical distribution of visual obstruction is calibrated to give estimates of total fuel loading, the loading of separate size categories and the vertical distribution and horizontal heterogeneity of fuels. The present paper provides a quick and simple method for estimating total aboveground biomass and structure that may be useful not just in studies of fire behaviour but where non-destructive assessment of biomass, vegetation density or canopy structure is needed. Calibration equations can be rapidly created for use in other vegetation or fuel types.


Sign in / Sign up

Export Citation Format

Share Document