Does the introduced bumblebee, Bombus terrestris (Apidae), prefer flowers of introduced or native plants in Australia?

2005 ◽  
Vol 53 (1) ◽  
pp. 29 ◽  
Author(s):  
Andrew B. Hingston

Proponents of importation of the European bumblebee, Bombus terrestris (L.), into Australia for pollination of commercial greenhouse crops argue that this species will have little impact on Australian native ecosystems because it prefers to forage on flowers of introduced species of plants rather than Australian native plants. However, data presented as evidence of preference for introduced plants have been equivocal. This study compared the attractiveness of introduced and Australian native plants to free-foraging B. terrestris in a garden at the interface between an urban area and native vegetation in the Australian island of Tasmania, where a feral population of B. terrestris had been established for over 10 years. No evidence was found to support the proposal that B. terrestris forages on flowers of introduced plants in preference to those of Australian native plants. The numbers of B. terrestris seen foraging per 1000 flowers did not differ significantly between introduced plants and Australian native plants, and the preferred food sources of B. terrestris included flowers of both introduced and Australian native species. Because B. terrestris forages frequently on many species of both introduced and native plants, assessments of its ecological impacts must include the effects of altered pollination on recruitment rates in both introduced weeds and native plants, and reduced quantities of nectar and pollen of native plants on recruitment rates of dependent fauna.

Botany ◽  
2019 ◽  
Vol 97 (6) ◽  
pp. 347-362 ◽  
Author(s):  
Christa P.H. Mulder ◽  
Katie V. Spellman

In interior Alaska, increases in growing season length and rapid expansion of introduced species are altering the environment for native plants. We evaluated whether earlier springs, warmer summers, and extended autumns alter the phenology of leaves and flowers in native and introduced forbs and shrubs in the boreal understory and open-canopy habitats, and whether the responses provide an advantage to either group. We tracked the phenology of 29 native and 12 introduced species over three years with very different spring, summer, and autumn conditions. The native species produced flowers (but not leaves) earlier than the introduced species, and both groups advanced leaf-out and flowering in the early-snowmelt year. However, shifts in phenology between early and late years were similar for both groups. There was no increase in fruit development rate for either group in the warm summer. In contrast, in the year with the extended autumn, the introduced plants extended leaf production and time of senescence much more than native species. While growth form and leaf habit could explain the differences in phenology between native and introduced groups in spring and summer, these traits could not account for differences in autumn. We conclude that in boreal Alaska extended autumns may benefit introduced species more than native ones.


2020 ◽  
Vol 637 ◽  
pp. 195-208 ◽  
Author(s):  
EM DeRoy ◽  
R Scott ◽  
NE Hussey ◽  
HJ MacIsaac

The ecological impacts of invasive species are highly variable and mediated by many factors, including both habitat and population abundance. Lionfish Pterois volitans are an invasive marine species which have high reported detrimental effects on prey populations, but whose effects relative to native predators are currently unknown for the recently colonized eastern Gulf of Mexico. We used functional response (FR) methodology to assess the ecological impact of lionfish relative to 2 functionally similar native species (red grouper Epinephelus morio and graysby grouper Cephalopholis cruentata) foraging in a heterogeneous environment. We then combined the per capita impact of each species with their field abundance to obtain a Relative Impact Potential (RIP). RIP assesses the broader ecological impact of invasive relative to native predators, the magnitude of which predicts community-level negative effects of invasive species. Lionfish FR and overall consumption rate was intermediate to that of red grouper (higher) and graysby grouper (lower). However, lionfish had the highest capture efficiency of all species, which was invariant of habitat. Much higher field abundance of lionfish resulted in high RIPs relative to both grouper species, demonstrating that the ecological impact of lionfish in this region will be driven mainly by high abundance and high predator efficiency rather than per capita effect. Our comparative study is the first empirical assessment of lionfish per capita impact and RIP in this region and is one of few such studies to quantify the FR of a marine predator.


2017 ◽  
pp. 1-4
Author(s):  
Amanda Garner ◽  
La Vergne Lehmann

2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Dody Priosambodo

Research about coastal forest vegetation in Sabutung island has been conducted.The aim of this research was to make an inventory of native species, introduced speciesand invasive spesies of plant in Sabutungisland. Sampling activities conducted withpurposive sampling method.Data collected with noted the plant species that foundduring exploring the island. All sample are photographed. Unidentified sample werecollected and identified in Marine and Environmental laboratory, Department ofBiology, Faculty of Mathematics and Natural Sciences, Hasanuddin University.Identification of the sample conducted based on: An Annotated Check-List of TheVascular Plants of The South China Sea and Its Shores by Turner et al. (2000) and Mangrove Guidebook for Southeast Asia by Wim Giesen et al. (2007)for coastal forestspecies; Tropical flowering plants: a guide to identification and cultivation by KirstenAlbrecht Llamas (2003) for introduced species andNonnative Invasive Plants of PacificCoast Forest. A Field Guide for Identification oleh Gray et al. (2011) and Guide to TheNaturalized and Invasive Plants of Southeast Asia by Arne Witt (2017) for invasivespecies. Data were analysed descriptively and displayed in tabular form. Antropogenicimpact i.e: land conversion and increased population were also discussed. From theresults of the study were recorded as many as 221 species of plants in Sabutung Island.Mostly dominated by ornamental plants and cultivated (introduced) plants with 131species of 46 tribes followed by native species with 67 species from 34 tribes. Invasivespecies were recorded with at least 19 species from 8 tribes. Nonetheless, invasivespecies are widespread and dominate space in almost all parts of the island. Most of thecoastal forest on Sabutung Island has been lost due to land conversion to settlementsand garden/plantation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260390
Author(s):  
Kowiyou Yessoufou ◽  
Annie Estelle Ambani ◽  
Hosam O. Elansary ◽  
Orou G. Gaoue

Understanding why alien plant species are incorporated into the medicinal flora in several local communities is central to invasion biology and ethnobiology. Theories suggest that alien plants are incorporated in local pharmacopoeias because they are more versatile or contribute unique secondary chemistry which make them less therapeutically redundant, or simply because they are locally more abundant than native species. However, a lack of a comprehensive test of these hypotheses limits our understanding of the dynamics of plants knowledge, use and potential implications for invasion. Here, we tested the predictions of several of these hypotheses using a unique dataset on the woody medicinal flora of southern Africa. We found that the size of a plant family predicts the number of medicinal plants in that family, a support for the non-random hypothesis of medicinal plant selection. However, we found no support for the diversification hypothesis: i) both alien and native plants were used in the treatment of similar diseases; ii) significantly more native species than alien contribute to disease treatments particularly of parasitic infections and obstetric-gynecological diseases, and iii) alien and native species share similar therapeutic redundancy. However, we found support for the versatility hypothesis, i.e., alien plants were more versatile than natives. These findings imply that, although alien plant species are not therapeutically unique, they do provide more uses than native plants (versatility), thus suggesting that they may not have been introduced primarily for therapeutic reasons. We call for similar studies to be carried out on alien herbaceous plants for a broader understanding of the integration of alien plants into the pharmacopoeias of the receiving communities.


Author(s):  
Sara E. Kuebbing

Abstract In 1999, Daniel Simberloff and Betsy Von Holle introduced the term 'invasional meltdown'. The term and the concept have been embraced and critiqued but have taken a firm hold within the invasion biology canon. The original formulation of the concept argued two key points: first, biologists rarely study how non-natives interact with one another. Second, nearly all the conceptual models about the success and impact of invasive species are predicated on the importance of competitive interactions and an implicit assumption that non-natives should interfere with establishment, spread and impact of other non-natives. In response, Simberloff and Von Holle called for more research on invader interactions and proposed an alternative consequence of non-native species interactions - invasional meltdown - where facilitative interactions among non-natives could increase the invasion rate or ecological impacts in invaded systems. This chapter outlines the primary pathways in which direct and indirect interactions among non-natives could lead to invasional meltdown. It provides examples of how different types of interactions among non-natives could lead to net positive effects on the invasion success of non-native plants or the impact of non-native plants on invaded ecosystems. Direct effects are by far the most commonly explored form of non-native- non- native interaction, primarily focusing on plant mutualisms with pollinators, seed dispersers or soil microbial mutualists. There are, however, also examples of non-native plants that benefit from commensal and even herbivorous interactions with other non-natives. Indirect interactions among non-natives are very infrequently studied. Although examples are scarce, non-natives may indirectly benefit other non-native plants through trophic cascades, apparent competition and indirect mutualisms. It remains unclear whether indirect effects are important pathways to invasional meltdown. More work is needed on studying ecosystems that are invaded by multiple non-native species and we need to consider the full range of interactions among non-natives that could either stymie or promote their spread, population growth and impact. Only then can we address how common facilitative interactions are relative to competitive interactions among non-natives or provide robust suggestions on how to manage ecosystems.


Author(s):  
M. Celeste Díaz Vélez ◽  
Ana E. Ferreras ◽  
Valeria Paiaro

Abstract Animal dispersers are essential for many non-native plants since they facilitate seed movement and might promote seed germination and seedling establishment, thereby increasing their chances of invasion. This chapter reviews the published literature on seed dispersal of non-native plant species by native and/or non-native animals. The following questions are addressed: (i) Are interactions between non-native plants and their animal dispersers evenly studied worldwide? (ii) Which are the distinctive traits (i.e. geographical origin, life form, dispersal strategy and propagule traits) of non-native plants that are dispersed by animals? (iii) Which are the most studied groups of dispersers of non-native plants around the world? (iv) Does the literature provide evidence for the Invasional Meltdown Hypothesis (non-native plant-non-native disperser facilitation)? (v) What is the role of animal dispersers at different stages of the non-native plant regeneration process? Our dataset of 204 articles indicates that geographical distribution of the studies was highly heterogeneous among continents, with the highest number coming from North America and the lowest from Asia and Central America. Most of the non-native plants involved in dispersal studies were woody species from Asia with fleshy fruits dispersed by endozoochory. More than the half of the animal dispersal agents noted were birds, followed by mammals, ants and reptiles. The dominance of bird-dispersal interactions over other animal groups was consistent across geographical regions. Although most of the studies involved only native dispersers, interactions among non-native species were detected, providing support for the existence of invasional meltdown processes. Of the total number of reviewed articles reporting seed removal, 74% evaluated seed dispersal, but only a few studies included seed germination (35.3%), seedling establishment (5.4%) or seed predation (23.5%). Finally, we discuss some research biases and directions for future studies in the area.


2020 ◽  
Vol 49 (3) ◽  
pp. 738-752 ◽  
Author(s):  
Alison C Dibble ◽  
Francis A Drummond ◽  
Lois Berg Stack

Abstract In a common garden study in Maine from 2012 to 2015, we used two bee species (Apis mellifera L. and Bombus ternarius Say (1837)) and three field-recognizable bee categories (‘Most Bombus’, ‘Halictidae’, and ‘Other Bees’) plus an ‘All Bees’ data aggregation to compare 17 native and 68 introduced plant taxa. Data were from three 1-min timed periods per flowering plant taxon on a given day at a site. We observed 17,792 bees and found that their response varied by bee species or group. Using mixed models to analyze our data, we found that native bees had higher visitation rates on native plants, while A. mellifera visited both native and introduced plants. Most groups visited native late-flowering and native mid-late-flowering plants at higher rates. ‘All Bees’ were attracted to native perennials (vs annuals and shrubs) and to tall plants, both native and introduced; A. mellifera was attracted to introduced perennials, to introduced tall plants, and to lower-growing native plants. Asclepias tuberosa L. elicited a strong response from B. ternarius. In only two of six pairs of wild types and cultivars, bees visited wild types more. Plants with long bloom periods and with small, densely arranged white flowers attracted higher bee visitation than did other configurations (e.g., Origanum vulgare L., one of our most attractive taxa). A general linear model showed that linear combinations of flower density, floral resource height, flower corolla depth, and flowering duration explained significant variation in visitation rates for each of the different bee taxa groups.


Sign in / Sign up

Export Citation Format

Share Document