early snowmelt
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 18)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Martha Maria Sander ◽  
Dan Chamberlain ◽  
Camille Mermillon ◽  
Riccardo Alba ◽  
Susanne Jähnig ◽  
...  

Timing reproduction to coincide with optimal environmental conditions is key for many organisms living in seasonal habitats. Advance in the onset of spring is a particular challenge to migratory birds that must time their arrival without knowing the conditions on the breeding grounds. This is amplified at high elevations where resource availability, which is linked to snowmelt and vegetation development, shows much annual variation. With the aim of exploring the effects of variability in the onset of local resource availability on reproduction, we compared key life history events in an Alpine population of the Northern Wheatear (Oenanthe oenanthe) between years of contrasting timing of snowmelt. Based on remote sensed images, we identified 2020 as an exceptionally early snowmelt and green-up year compared to the preceding year and the long-term average. Individuals tracked with light-level geolocators arrived well before the snowmelt in 2020 and clutch initiation dates across the population were earlier in 2020 compared to 2019. However, observations from a citizen science database and nest monitoring data showed that the arrival-breeding interval was shorter in 2020, thus the advance in timing lagged behind the environmental conditions. While hatching success was similar in both years, fledging success was significantly reduced in 2020. A trophic mismatch in early 2020 could be a possible explanation for the reduced reproductive success, but alternative explanations cannot be excluded. Our results show that, despite the timely arrival at the breeding grounds and a contraction of the arrival-breeding interval, Wheatears were not able to advance breeding activities in synchrony with environmental conditions in 2020. Earlier reproductive seasons are expected to become more frequent in the future. We show that the negative effects of changing seasons in Alpine migratory birds might be similar to birds breeding at high latitudes, despite their shorter migratory distance.


2021 ◽  
Author(s):  
Haruko M. Wainwright ◽  
Sebastian Uhlemann ◽  
Maya Franklin ◽  
Nicola Falco ◽  
Nicholas J. Bouskill ◽  
...  

Abstract. In this study, we develop a watershed zonation approach for characterizing watershed organization and function in a tractable manner by integrating multiple spatial data layers. Recognizing the coupled ecohydrogeological-biogeochemical interactions that occur across bedrock through canopy compartments of a watershed, we hypothesize that (1) suites of above/belowground properties co-varying with each other, (2) hillslopes are representative units for capturing watershed-scale heterogeneity, (3) remote sensing data layers and clustering methods can be used to identify watershed hillslope zones having unique distributions of bedrock-through-canopy properties relative to neighboring parcels, and (4) property suites associated with the identified zones can be used to understand zone-based functions, such as response to early snowmelt or drought, and associated solute exports to the river. We demonstrate this concept using unsupervised clustering methods that synthesizes airborne remote sensing data (LiDAR, hyperspectral, and electromagnetic surveys) along with satellite and streamflow data collected in the East River Watershed, Crested Butte, Colorado, USA. Results show that, (1) hillslope-average elevation and slope are significantly correlated with near-surface bedrock electrical resistivity (top 20 m), (2) elevation and aspect are independent controls on plant and snow signatures, (3) the correlation between hillslope-averaged above- and below- ground properties are significantly higher than pixel-by-pixel correlation and (4) K-means, hierarchical clustering, and Gaussian mixture clustering methods generate similar zonation patterns across the watershed. Using independently collected data, it is shown that the identified zones provide information about zone-based watershed functions, including foresummer drought sensitivity and river nitrogen exports. The approach is expected to be extensible to other sites and generally useful for guiding the selection of hillslope experiment locations and informing model parameterization.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 768
Author(s):  
Jerónimo Vázquez-Ramírez ◽  
Susanna E. Venn

The early life-history stages of plants, such as germination and seedling establishment, depend on favorable environmental conditions. Changes in the environment at high altitude and high latitude regions, as a consequence of climate change, will significantly affect these life stages and may have profound effects on species recruitment and survival. Here, we synthesize the current knowledge of climate change effects on treeline, tundra, and alpine plants’ early life-history stages. We systematically searched the available literature on this subject up until February 2020 and recovered 835 potential articles that matched our search terms. From these, we found 39 studies that matched our selection criteria. We characterized the studies within our review and performed a qualitative and quantitative analysis of the extracted meta-data regarding the climatic effects likely to change in these regions, including projected warming, early snowmelt, changes in precipitation, nutrient availability and their effects on seed maturation, seed dormancy, germination, seedling emergence and seedling establishment. Although the studies showed high variability in their methods and studied species, the qualitative and quantitative analysis of the extracted data allowed us to detect existing patterns and knowledge gaps. For example, warming temperatures seemed to favor all studied life stages except seedling establishment, a decrease in precipitation had a strong negative effect on seed stages and, surprisingly, early snowmelt had a neutral effect on seed dormancy and germination but a positive effect on seedling establishment. For some of the studied life stages, data within the literature were too limited to identify a precise effect. There is still a need for investigations that increase our understanding of the climate change impacts on high altitude and high latitude plants’ reproductive processes, as this is crucial for plant conservation and evidence-based management of these environments. Finally, we make recommendations for further research based on the identified knowledge gaps.


2021 ◽  
Vol 165 (3-4) ◽  
Author(s):  
Maria Vorkauf ◽  
Christoph Marty ◽  
Ansgar Kahmen ◽  
Erika Hiltbrunner

AbstractThe start of the growing season for alpine plants is primarily determined by the date of snowmelt. We analysed time series of snow depth at 23 manually operated and 15 automatic (IMIS) stations between 1055 and 2555 m asl in the Swiss Central Alps. Between 1958 and 2019, snowmelt dates occurred 2.8 ± 1.3 days earlier in the year per decade, with a strong shift towards earlier snowmelt dates during the late 1980s and early 1990s, but non-significant trends thereafter. Snowmelt dates at high-elevation automatic stations strongly correlated with snowmelt dates at lower-elevation manual stations. At all elevations, snowmelt dates strongly depended on spring air temperatures. More specifically, 44% of the variance in snowmelt dates was explained by the first day when a three-week running mean of daily air temperatures passed a 5 °C threshold. The mean winter snow depth accounted for 30% of the variance. We adopted the effects of air temperature and snowpack height to Swiss climate change scenarios to explore likely snowmelt trends throughout the twenty-first century. Under a high-emission scenario (RCP8.5), we simulated snowmelt dates to advance by 6 days per decade by the end of the century. By then, snowmelt dates could occur one month earlier than during the reference periods (1990–2019 and 2000–2019). Such early snowmelt may extend the alpine growing season by one third of its current duration while exposing alpine plants to shorter daylengths and adding a higher risk of freezing damage.


2021 ◽  
Author(s):  
Farhan Hafeez ◽  
Lionel Bernard ◽  
Jean-Christophe Clement ◽  
Franck Poly ◽  
Thomas Pommier

Subalpine grassland ecosystems are important from biodiversity, agriculture, and touristic perspectives but their resilience to seasonally occurring climatic extremes is increasingly challenged with climate change, accelerating their vulnerability to tipping points. Microbial communities, which are central in ecosystem functioning, are usually considered as more resistant and highly resilient to such extreme events due to their functional redundancy and strong selection in residing habitats. To investigate this, we explored the soil microbial responses upon recurrent summer droughts associated with early snowmelt in grasslands mesocosms set-up at the Lautaret Pass (French Alps). Potential respiration, nitrification and denitrification were monitored over a period of two growing seasons along with quantification of community gene abundances of total bacteria as well as (de)nitrifiers. Results revealed that droughts had a low and short-term impact on bacterial total respiration supporting their hypothesized high resistance and ability to recover. Nitrification and abundances of the corresponding functional guilds showed relatively strong resistance to summer droughts but declined in response to early snowmelt. This triggered a cascading effect on denitrification but also on the abundances of denitrifying communities which could recover from all climatic extremes except from the summer droughts where nitrifiers were collapsed. Denitrification and the respective functional groups faced high impact of applied stresses with strong reduction in the abundance and activity of this specialized community. Although, the consequently lower microbial competition for nitrate may be positive for plant biomass production, warnings exist when considering the potential nitrogen leaching from these ecosystems as well as risks of greenhouses gases emission such as N2O


2021 ◽  
Vol 190 ◽  
pp. 102479
Author(s):  
Gabrielle Nadaï ◽  
Eva-Maria Nöthig ◽  
Louis Fortier ◽  
Catherine Lalande

2020 ◽  
Vol 12 (4) ◽  
pp. 901-919
Author(s):  
Bhupendra S. ADHIKARI ◽  
Rahul KUMAR

The present study attempts to investigate the phenological changes of herbaceous plant species in early snowmelt microsite and late snowmelt microsite in treeline ecotone (3200-3300 m asl) at Tungnath, western Himalaya. Four sites, each with two microsites (early snowmelt: ES and late snowmelt: LS) were selected and within each microsite, 3 quadrats (1x1m each) were permanently laid and studied for phenology. Eighty-six species were recorded, of which the proportion of perennial forbs, hemicryptophytes and natives was 90, 84 and 70%, respectively. The early phenophase was noticed in the majority of species in ES microsite than that of LS microsite and the timing of different phenophases varied among microsites. The vegetative phase peaked July (75.6%), while flowering, fruiting and seed maturation phases peaked in August (72.1% and 23.3%, respectively) and 71% species attained the senescence during September. This indicates that species might adapt to the different adaptation to a warming climate. Immediately after the snowmelt 10 species were observed in flowering, while 11 species were in the bud development phase. Comparing 13 common species of the present study with those of past in same or similar study areas indicates that timing and duration of vegetative and flowering phenophase (77% and 69%, respectively) have advanced and lengthened, while fruiting and seed maturation have shortened. Furthermore, phenophase initiation has advanced for flowering (69% species), fruiting (46% species) and senescence (38% species) phases. It seems that the early snowmelt influences spring phenology of herb species on the microsite level and may continue to influence the overall phenology of species for the whole growing season in timberline.


Ecology ◽  
2020 ◽  
Vol 101 (12) ◽  
Author(s):  
Meera Lee Sethi ◽  
Elli J. Theobald ◽  
Ian Breckheimer ◽  
Janneke Hille Ris Lambers

2020 ◽  
Vol 46 (1) ◽  
pp. 81-102 ◽  
Author(s):  
A. Pisabarro

Snowfalls are important meteorological events affecting the physical environment of the Cantabrian Mountains. This work analyzes the effects of snow on several elements such as relief, landforms, ground climate and snowmelt waters. The ground thermal regime and associated parameters were studied using temperature data loggers and satellite images and were described in combination with observed geomorphological processes and landforms. A geomorphological map was drawn up and trends in climate patterns and runoff were calculated. Ground temperature monitoring in warm years is not optimal, though allow to know the limit conditions for developing cold processes. Results show that geomorphological processes are not significant and that solifluction deriving from snowmelt, is the only active process in years without freeze or with thick snow cover. Snowfall evolution in recent decades in correlation with flow water and climate features provide the certainty that snow distribution also affects efficacy in runoff generation and moves the flow peak in rivers due to early snowmelt.


Oecologia ◽  
2020 ◽  
Vol 194 (3) ◽  
pp. 301-310
Author(s):  
Alexander V. Kumar ◽  
Marketa Zimova ◽  
James R. Sparks ◽  
L. Scott Mills

Abstract Global reduction in snow cover duration is one of the most consistent and widespread climate change outcomes. Declining snow duration has severe negative consequences for diverse taxa including seasonally color molting species, which rely on snow for camouflage. However, phenotypic plasticity may facilitate adaptation to reduced snow duration. Plastic responses could occur in the color molt phenology or through behavior that minimizes coat color mismatch or its consequences. We quantified molt phenology of 200 wild snowshoe hares (Lepus americanus), and measured microhabitat choice and local snow cover. Similar to other studies, we found that hares did not show behavioral plasticity to minimize coat color mismatch via background matching; instead they preferred colder, snow free areas regardless of their coat color. Furthermore, hares did not behaviorally mitigate the negative consequences of mismatch by choosing resting sites with denser vegetation cover when mismatched. Importantly, we demonstrated plasticity in the initiation and the rate of the molt and established the direct effect of snow on molt phenology; greater snow cover was associated with whiter hares and this association was not due to whiter hares preferring snowier areas. However, despite the observed snow-mediated plasticity in molt phenology, camouflage mismatch with white hares on brown snowless ground persisted and was more frequent during early snowmelt. Thus, we find no evidence that phenotypic plasticity in snowshoe hares is sufficient to facilitate adaptive rescue to camouflage mismatch under climate change.


Sign in / Sign up

Export Citation Format

Share Document