Nonparallel Geographic Patterns for Tolerance to Cold and Desiccation in Drosophila-Melanogaster and Drosophila-Simulans

1990 ◽  
Vol 38 (2) ◽  
pp. 155 ◽  
Author(s):  
JK Davidson

D. melanogaster populations from the fluctuating temperate climate of Melbourne (38�S) and in the tropics at Townsville (19�S) were investigated for differentiation in cold tolerance and desiccation tolerance, and were found to differ as predicted a priori from climatic considerations. Flies from the former locality were more tolerant to both of these environmental stresses. In comparable D. simulans populations, there was no significant differentiation between populations for cold tolerance or desiccation tolerance. In both species, there was genetic variation within each population. It is hypothesised that the non-parallel patterns in these sibling species may be due to different genetic strategies in temporal variation for tolerance to the stresses associated with climatic extremes. For D. melanogaster and D. simulans, there was no strong association between cold tolerance and desiccation tolerance in either the Melbourne and Townsville populations. Correlations between the stresses over the 15 strains were calculated for the sexes, generations, localities and species separately and were all non-significant. Cold tolerance and desiccation tolerance thus involve different physiological mechanisms.

2018 ◽  
Author(s):  
Anne Boynard ◽  
Daniel Hurtmans ◽  
Katerina Garane ◽  
Florence Goutail ◽  
Juliette Hadji-Lazaro ◽  
...  

Abstract. This paper assesses the quality of IASI/Metop-A (IASI-A) and IASI/Metop-B (IASI-B) ozone (O3) products (total and partial O3 columns) retrieved with the Fast Optimal Retrievals on Layers for IASI Ozone (FORLI-O3) v20151001 software for nine years (2008–2017) through an extensive inter-comparison and validation exercise using independent observations (satellite, ground-based and ozonesonde). IASI-A and IASI-B Total O3 Columns (TOCs) are generally consistent, with a global mean difference less than 0.3 % for both day- and nighttime measurements, IASI-A being slightly higher than IASI-B. A global difference less than 2.4 % is found for the tropospheric (TROPO) O3 column product (IASI-A being lower than IASI-B), which is partly due to a temporary issue related to IASI-A viewing angle in 2015. Our validation shows that IASI-A and IASI-B TOCs are consistent with GOME-2, Dobson, Brewer and SAOZ retrieved ones, with global mean differences in the range 0.1–2 % depending on the instruments. The IASI-A and ground-based TOC comparison for the period 2008–July 2017 shows good long-term stability (negative trends within 3 % decade−1). The comparison results between IASI-A and IASI-B against smoothed ozonesonde partial O3 columns vary in altitude and latitude, with maximum standard deviation for the 300–150 hPa column (20–40 %) due to strong ozone variability and a priori uncertainty. The worst agreement with the ozonesondes and with UV-vis retrieved TOC [satellite and ground] is found at the southern high latitudes. Compared to ozonesonde data, IASI-A and IASI-B O3 products overestimate the O3 abundance in the stratosphere (up to 20 % for the 150–25 hPa column) and underestimates the O3 abundance in the troposphere (within 10 % for the mid-latitudes and ~ 18 % for the tropics). Based on the period 2011–2016, non-significant drift is found for the northern hemispheric tropospheric columns while a small drift prevails for the period before 2011.


2015 ◽  
pp. 1055-1062 ◽  
Author(s):  
Andrea Casteriano ◽  
Meredith A. Wilkes ◽  
Rosalind Deaker

1988 ◽  
Vol 36 (4) ◽  
pp. 385 ◽  
Author(s):  
BR Maslin ◽  
L Pedley

Patterns of distribution are described for the three subgenera and nine sections that make up the Australian Acacia flora. Subgenus Phyllodineae (833 species) is widespread and contains 99% of the species; subgenus Acacia (six species) and subgenus Aculeiferum (one species) are poorly represented and virtually confined to the north of the continent. The geographic patterns of species-richness are strongly influenced by sections Phyllodineae (352 species), Juliflorae (219 species) and Plurinerves (178 species). Section Phyllodineae has centres of richness south of the Tropic of Capricorn in temperate and adjacent semiarid areas of eastern, south-eastern and south-western Australia. The section is poorly represented in the tropics. The closely related sections Juliflorae and Plurinerves predominate in the north of the continent, semiarid areas of the south-west, many rocky tablelands of the Arid Zone and along the Great Dividing Range and adjacent inland riverine lowland areas in eastern Australia. The remaining four sections contribute little to the overall patterns of species-richness. The principal speciespoor areas are sandy and fluvial lowland regions of the Arid Zone. In eastern Australia, sections Botrycephalae, Juliflorae, Phyllodineae and Plurinerves show discontinuous patterns of species-richness along the Great Dividing Range. All sections have species whose ranges terminate in the area of the McPherson-Macleay Overlap region.


2017 ◽  
Vol 17 (7) ◽  
pp. 4781-4797 ◽  
Author(s):  
Liang Feng ◽  
Paul I. Palmer ◽  
Hartmut Bösch ◽  
Robert J. Parker ◽  
Alex J. Webb ◽  
...  

Abstract. We use the GEOS-Chem global 3-D model of atmospheric chemistry and transport and an ensemble Kalman filter to simultaneously infer regional fluxes of methane (CH4) and carbon dioxide (CO2) directly from GOSAT retrievals of XCH4 : XCO2, using sparse ground-based CH4 and CO2 mole fraction data to anchor the ratio. This work builds on the previously reported theory that takes into account that (1) these ratios are less prone to systematic error than either the full-physics data products or the proxy CH4 data products; and (2) the resulting CH4 and CO2 fluxes are self-consistent. We show that a posteriori fluxes inferred from the GOSAT data generally outperform the fluxes inferred only from in situ data, as expected. GOSAT CH4 and CO2 fluxes are consistent with global growth rates for CO2 and CH4 reported by NOAA and have a range of independent data including new profile measurements (0–7 km) over the Amazon Basin that were collected specifically to help validate GOSAT over this geographical region. We find that large-scale multi-year annual a posteriori CO2 fluxes inferred from GOSAT data are similar to those inferred from the in situ surface data but with smaller uncertainties, particularly over the tropics. GOSAT data are consistent with smaller peak-to-peak seasonal amplitudes of CO2 than either the a priori or in situ inversion, particularly over the tropics and the southern extratropics. Over the northern extratropics, GOSAT data show larger uptake than the a priori but less than the in situ inversion, resulting in small net emissions over the year. We also find evidence that the carbon balance of tropical South America was perturbed following the droughts of 2010 and 2012 with net annual fluxes not returning to an approximate annual balance until 2013. In contrast, GOSAT data significantly changed the a priori spatial distribution of CH4 emission with a 40 % increase over tropical South America and tropical Asia and a smaller decrease over Eurasia and temperate South America. We find no evidence from GOSAT that tropical South American CH4 fluxes were dramatically affected by the two large-scale Amazon droughts. However, we find that GOSAT data are consistent with double seasonal peaks in Amazonian fluxes that are reproduced over the 5 years we studied: a small peak from January to April and a larger peak from June to October, which are likely due to superimposed emissions from different geographical regions.


2013 ◽  
Vol 6 (5) ◽  
pp. 1413-1423 ◽  
Author(s):  
W. W. Verstraeten ◽  
K. F. Boersma ◽  
J. Zörner ◽  
M. A. F. Allaart ◽  
K. W. Bowman ◽  
...  

Abstract. In this analysis, Tropospheric Emission Spectrometer (TES) V004 nadir ozone (O3) profiles are validated with more than 4400 coinciding ozonesonde measurements taken across the world from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) during the period 2005–2010. The TES observation operator was applied to the sonde data to ensure a consistent comparison between TES and ozonesonde data, i.e. without the influence of the a priori O3 profile needed to regulate the retrieval. Generally, TES V004 O3 retrievals are biased high by 2–7 ppbv (7–15%) in the troposphere, consistent with validation results from earlier studies. Because of two degrees of freedom for signal in the troposphere, we can distinguish between upper and lower troposphere mean biases, respectively ranging from −0.4 to +13.3 ppbv for the upper troposphere and +3.9 to +6.0 ppbv for the lower troposphere. Focusing on the 464 hPa retrieval level, broadly representative of the free tropospheric O3, we find differences in the TES biases for the tropics (+3 ppbv, +7%), sub-tropics (+5 ppbv, +11%), and northern (+7 ppbv, +13%) and southern mid-latitudes (+4 ppbv, +10%). The relatively long-term record (6 yr) of TES–ozonesonde comparisons allowed us to quantify temporal variations in TES biases at 464 hPa. We find that there are no discernable biases in each of these latitudinal bands; temporal variations in the bias are typically within the uncertainty of the difference between TES and ozonesondes. Establishing these bias patterns is important in order to make meaningful use of TES O3 data in applications such as model evaluation, trend analysis, or data assimilation.


Genome ◽  
2016 ◽  
Vol 59 (2) ◽  
pp. 137-145 ◽  
Author(s):  
Hari D. Upadhyaya ◽  
Yi-Hong Wang ◽  
Dintyala V.S.S.R. Sastry ◽  
Sangam L. Dwivedi ◽  
P.V. Vara Prasad ◽  
...  

Sorghum is one of the world’s most important food, feed, and fiber crops as well as a potential feedstock for lignocellulosic bioenergy. Early-season planting extends sorghum’s growing season and increases yield in temperate regions. However, sorghum’s sensitivity to low soil temperatures adversely impacts seed germination. In this study, we evaluated the 242 accessions of the ICRISAT sorghum mini core collection for seed germination and seedling vigor at 12 °C as a measure of cold tolerance. Genome-wide association analysis was performed with approximately 162 177 single nucleotide polymorphism markers. Only one marker locus (Locus 7-2) was significantly associated with low-temperature germination and none with vigor. The linkage of Locus 7-2 to low-temperature germination was supported by four lines of evidence: strong association in three independent experiments, co-localization with previously mapped cold tolerance quantitative trait loci (QTL) in sorghum, a candidate gene that increases cold tolerance and germination rate when its wheat homolog is overexpressed in tobacco, and its syntenic region in rice co-localized with two cold tolerance QTL in rice. This locus may be useful in developing tools for molecular breeding of sorghums with improved low-temperature germinability.


The effect of exercise on the human body has been made the subject of much study at different times. Researches have been carried out under atmospheric conditions such as prevail in different parts of Northern Europe, and they have been extended in a few instances to the effects of high temperature and humidity upon the human body. In the latter observations the conditions such as high temperature and varying humidity were produced by artificial means only, and general deductions as to the influence of an actual tropical climate upon the human organism cannot be safely drawn from them. In these experiments the subjects were living in a temperate climate, were exposed to heat and humidity for a short time only, and left the hot chamber at the end of the experiment for an atmosphere of coolness and comfort; in the tropics, on the other hand, the inhabitants are continuously exposed to heat and humidity without respite. Conclusions of real value can thus be drawn only from observations actually carried out in a hot climate, and systematic work in this direction is still lacking. Although observations have been made in the tropics on body temperature, blood pressure, pulse and respiration rate, and metabolism, yet their object has only been to obtain normal standards for the tropics for comparison with those of Europe.


2014 ◽  
Vol 27 (2) ◽  
pp. 740-756 ◽  
Author(s):  
Hua Chen ◽  
Edwin K. Schneider

Abstract It is commonly assumed that a reasonable estimate of the SST-forced component of the observed atmospheric circulation is given by an atmospheric GCM (AGCM) forced with the observed SST. However, there are results that find different SST-forced responses from the observed, for example for the ENSO–monsoon relationship, and suggest that these differences are due to lack of coupling to the ocean rather than atmospheric model bias unrelated to coupling. Here, the coupling issue is isolated and examined through perfect model experiments. A coupled atmosphere–ocean GCM (CGCM) simulation and an AGCM simulation forced by the SST from the CGCM are compared to examine whether the SST-forced responses are the same. This question cannot be addressed directly, since the SST-forced response of the CGCM is a priori unknown. Therefore, two indirect tests are applied, based on the assumption that the noise decorrelation time scale is short compared to a month. The first test is to compare the time-lagged linear regressions of the atmospheric fields onto several SST indices (defined as the area-averaged SST anomalies in the tropics or extratropics), with SST leading the atmosphere by a month. The second test is to compare the time lagged linear covariances of several atmospheric indices (including two monsoon indices and a North Atlantic Oscillation index) and SST, with the SST leading the atmosphere by a month. Both tests find that the SST-forced responses are the same in the CGCM and SST-forced AGCM. These tests can be extended to compare the SST-forced responses between different AGCMs, CGCMs, and observations.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1309
Author(s):  
Bo Eng Cheong ◽  
Olive Onyemaobi ◽  
William Wing Ho Ho ◽  
Thomas Ben Biddulph ◽  
Thusitha W. T. Rupasinghe ◽  
...  

Chilling and frost conditions impose major yield restraints to wheat crops in Australia and other temperate climate regions. Unpredictability and variability of field frost events are major impediments for cold tolerance breeding. Metabolome and lipidome profiling were used to compare the cold response in spikes of cold-tolerant Young and sensitive variety Wyalkatchem at the young microspore (YM) stage of pollen development. We aimed to identify metabolite markers that can reliably distinguish cold-tolerant and sensitive wheat varieties for future cold-tolerance phenotyping applications. We scored changes in spike metabolites and lipids for both varieties during cold acclimation after initial and prolonged exposure to combined chilling and freezing cycles (1 and 4 days, respectively) using controlled environment conditions. The two contrasting wheat varieties showed qualitative and quantitative differences in primary metabolites involved in osmoprotection, but differences in lipid accumulation most distinctively separated the cold response of the two wheat lines. These results resemble what we previously observed in flag leaves of the same two wheat varieties. The fact that this response occurs in tissue types with very different functions indicates that chilling and freezing tolerance in these wheat lines is associated with re-modelling of membrane lipid composition to maintain membrane fluidity.


2020 ◽  
Vol 170 ◽  
pp. 115294 ◽  
Author(s):  
Marc P. Verhougstraete ◽  
Kristen Pogreba-Brown ◽  
Kelly A. Reynolds ◽  
Claudia Condé Lamparelli ◽  
Maria Inês Zanoli Sato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document