scholarly journals Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets

2004 ◽  
Vol 101 (15) ◽  
pp. 5610-5615 ◽  
Author(s):  
K. M. Huster ◽  
V. Busch ◽  
M. Schiemann ◽  
K. Linkemann ◽  
K. M. Kerksiek ◽  
...  
2020 ◽  
Vol 32 (9) ◽  
pp. 571-581 ◽  
Author(s):  
Shiki Takamura

Abstract Antigen-driven activation of CD8+ T cells results in the development of a robust anti-pathogen response and ultimately leads to the establishment of long-lived memory T cells. During the primary response, CD8+ T cells interact multiple times with cognate antigen on distinct types of antigen-presenting cells. The timing, location and context of these antigen encounters significantly impact the differentiation programs initiated in the cells. Moderate re-activation in the periphery promotes the establishment of the tissue-resident memory T cells that serve as sentinels at the portal of pathogen entry. Under some circumstances, moderate re-activation of T cells in the periphery can result in the excessive expansion and accumulation of circulatory memory T cells, a process called memory inflation. In contrast, excessive re-activation stimuli generally impede conventional T-cell differentiation programs and can result in T-cell exhaustion. However, these conditions can also elicit a small population of exhausted T cells with a memory-like signature and self-renewal capability that are capable of responding to immunotherapy, and restoration of functional activity. Although it is clear that antigen re-encounter during the primary immune response has a significant impact on memory T-cell development, we still do not understand the molecular details that drive these fate decisions. Here, we review our understanding of how antigen encounters and re-activation events impact the array of memory CD8+ T-cell subsets subsequently generated. Identification of the molecular programs that drive memory T-cell generation will advance the development of new vaccine strategies that elicit high-quality CD8+ T-cell memory.


2016 ◽  
Vol 136 (5) ◽  
pp. S2
Author(s):  
T.R. Matos ◽  
A. Gehad ◽  
J. Teague ◽  
J.T. O’Malley ◽  
E.L. Lowry ◽  
...  

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Nathan Schoettler ◽  
Cara L Hrusch ◽  
Kelly M Blaine ◽  
Anne I Sperling ◽  
Carole Ober

Abstract Antigen-specific memory T cells persist for years after exposure to a pathogen and provide effective recall responses. Many memory T cell subsets have been identified and differ in abundance throughout tissues. This study focused on CD4 and CD8 memory T cells from paired human lung and lung draining lymph node (LDLN) samples and identified substantial differences in the transcriptional landscape of these subsets, including higher expression of an array of innate immune receptors in lung T cells which were further validated by flow cytometry. Using T cell receptor analysis, we determined the clonal overlap between memory T cell subsets within the lung and within the LDLN, and this was greater than the clonal overlap observed between memory T cell subsets compared across tissues. Our results suggest that lung and LDLN memory T cells originate from different precursor pools, recognize distinct antigens and likely have separate roles in immune responses.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3242-3242
Author(s):  
Robbert van der Voort ◽  
Claudia Brandao ◽  
Thomas J. Volman ◽  
Viviènne Verweij ◽  
Klaas van Gisbergen ◽  
...  

Abstract Abstract 3242 Although the importance of the bone marrow (BM) in hematopoiesis is well known, its function in adaptive immune responses has only recently been acknowledged. Currently it is known that the BM contains fully functional CD4+ and CD8+ T cells that can engage in both primary and secondary immune responses. Interestingly, most of these T cells belong to the memory T cell lineage, identifying the BM as one of the largest memory T cell reservoirs in the body. Since not much is known about the trafficking of BM T cells, we compared the homing phenotype and function of T cell subsets in the BM, blood, spleen and peripheral lymph nodes (pLN). In addition, we determined the expression of chemokine mRNA and protein levels in the BM and other lymphoid organs. We confirmed that at least 80% of the CD4+ and 60% of the CD8+ BM T cells have a memory phenotype, and that most CD4+ T cells belong to the effector memory lineage, while the CD8+ population predominantly consists of central memory T cells. Most BM T cells expressed the chemokine receptor CXCR3, the adhesion molecules P-selectin glycoprotein ligand 1 and VLA-4, and increased levels of CD44 and LFA-1, as compared to T cells from the spleen. In addition, L-selectin was absent from most CD4+ BM T cells, but present on virtually all CD8+ T cells. Notably, the percentage of CXCR3+ T cells within the effector memory and central memory subsets from BM was higher than within the same subsets from pLN. Furthermore, BM contained significant mRNA levels of the CXCR3 ligands CXCL9, CXCL10 and CXCL11. An in vivo migration assay using a mixture of fluorescent-labeled T cells from CXCR3-deficient mice and control mice indicated however that during homeostasis CXCR3 does not play a major role in BM entry or retention. These data suggest that CXCR3 expressed by memory T cells is rather involved in BM exit, than in BM entry. Indeed, we observed that, as compared to control mice, CXCR3−/− mice contained significantly more CD4+ and CD8+ T cells in their BM. Additional in vitro assays demonstrated that CD4+ and CD8+ BM T cells migrated vigorously in response to CXCL9 and CXCL10, generally released in high concentrations during inflammation. Finally, we demonstrate that CXCR3−/− effector/effector memory T cells, but not wild type T cells, accumulate in the BM of mice infected with lymphocytic choriomeningitis virus. Altogether, these data demonstrate that the BM is a major reservoir of memory T cells that employ CXCR3 to quickly respond to chemotactic signals from inflamed tissues. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 263-263
Author(s):  
Giacomo Oliveira ◽  
Eliana Ruggiero ◽  
Maria Teresa Lupo Stanghellini ◽  
Nicoletta Cieri ◽  
Mattia D'Agostino ◽  
...  

Abstract BACKGROUND: Long-term T-cell survival is pivotal for the development of effective therapeutic approaches against pathogens and cancer, since the success of immunotherapy requires the generation of a robust, safe but also durable immune response. Even if it is established that memory cells can survive and persist for years, little is known about the requirements for their long-term persistence. Suicide gene therapy after T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) provides a unique model to study memory T cells. In this setting, patients receive the post-transplant infusion of donor-derived gene-modified memory T lymphocytes retrovirally transduced to express the Herpes Simples Virus Thymidine Kinase (TK) suicide gene and the DLNGFR selection marker. The presence of a safety switch allows the infusion into patients of a broad T-cell repertoire in the absence of immune suppression, while the surface marker enables unambiguous detection and close monitoring of gene-modified cells circulating in treated patients. In the present work we characterize the immunological profile of a cohort of long-term survivors after suicide gene therapy and we studied the fate of persisting TK cells to shed light on memory T cell dynamics in vivo and to unravel the requirements for long-term persistence directly in humans. RESULTS: We studied 10 adult patients who underwent haplo-HSCT and infusion of suicide-gene modified donor T cells (median dose: 1.9x107 cells/kg, range:1-39.5x106) for high-risk hematologic malignancies between 1995 and 2012. Three out of 10 patients (33%) experienced GvHD early after HSCT; in all cases, ganciclovir (GCV) administration proved effective in abrogating the adverse reaction. At a median follow-up of 7 years (range 2-14), all patients were in complete remission and free of GvHD, and displayed a complete and broad donor-derived immune system characterized by physiological counts of NK cells, B lymphocytes, γδ T cells and naïve and memory CD4+ or CD8+ T cells. TK cells were detected in all patients, at low levels (median=4cells/uL), even in patients treated with GCV. Ex vivo selection of pure TK-cells confirmed the presence of functional transduced cells, thus directly demonstrating the ability of memory T cells to persist for years. Importantly, GCV sensitivity was preserved in long-term persisting TK cells, independently from their differentiation phenotype. Longitudinal follow up revealed that TK cells circulated in patients at stable levels and displayed a conserved phenotype comprising effector memory (TEM), central memory (TCM) and stem memory (TSCM) T cells. The low level of Ki-67 positivity suggested the maintenance of a pool of gene-modified memory cells through homeostatic proliferation. Polyclonality was demonstrated by sequencing among TK cells of thousands of diverse TCRs with a broad usage of V and J alpha and beta genes. The number of TK cells persisting at the longest follow-up did not correlate with the amount of infused cells, but instead with the peak of TK cells measured within the first months after infusion, suggesting that antigen recognition is dominant in driving in vivo expansion and persistence of memory T cells. Accordingly, we documented the persistence of CMV and Flu-specific TK cells only after post-transplant CMV reactivation or after Flu infection. Characterization of TK cell products infused to patients showed that the amount of infused TSCM cells positively correlates with early expansion and long-term persistence of gene-marked cells. By combining sorting of memory T-cell subsets with sequencing of integration sites, TCRα and TCRβ clonal markers, we longitudinally traced T-cell clones from infused products to late follow-up time-points. We showed that although T cells retrieved long-term are enriched in clones originally shared in different memory T-cell subsets, dominant long-term clonotypes preferentially originate from infused TSCM clones, suggesting that TSCM might play a privileged role in the generation of a long-lasting immunological memory. CONCLUSION: In a completely restored immune system, suicide gene-modified donor T cells persist for up to 14 years in treated patients. Long-term persistence of memory T cells is determined by antigen exposure, and by the original phenotype of infused cells, according to a hierarchical model in which TSCM are superior to TCM and TEM/EFF. Disclosures Lambiase: MolMed S.p.A: Employment. Traversari:MolMed S.p.A: Employment. Bordignon:MolMed S.p.A: Membership on an entity's Board of Directors or advisory committees. Bonini:MolMed S.p.A: Consultancy.


2021 ◽  
Vol 8 ◽  
Author(s):  
Carmen de Jesús-Gil ◽  
Lídia Sans-de San Nicolàs ◽  
Irene García-Jiménez ◽  
Marta Ferran ◽  
Ramon M. Pujol ◽  
...  

Psoriasis is a common inflammatory skin condition resulting from the interplay between epidermal keratinocytes and immunological cellular components. This sustained inflammation is essentially driven by pro-inflammatory cytokines with the IL-23/IL-17 axis playing a critical central role, as proved by the clinical efficacy of their blockade in patients. Among all the CD45R0+ memory T cell subsets, those with special tropism for cutaneous tissues are identified by the expression of the Cutaneous Lymphocyte-associated Antigen (CLA) carbohydrate on their surface, that is induced during T cell maturation particularly in the skin-draining lymph nodes. Because of their ability to recirculate between the skin and blood, circulating CLA+ memory T cells reflect the immune abnormalities found in different human cutaneous conditions, such as psoriasis. Based on this premise, studying the effect of different environmental microbial triggers and psoriatic lesional cytokines on CLA+ memory T cells, in the presence of autologous epidermal cells from patients, revealed important IL-17 cytokines responses that are likely to enhance the pro-inflammatory loop underlying the development of psoriatic lesions. The goal of this mini-review is to present latest data regarding cytokines implicated in plaque and guttate psoriasis immunopathogenesis from the prism of CLA+ memory T cells, that are specifically related to the cutaneous immune system.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2439-2439
Author(s):  
J. Joseph Melenhorst ◽  
Phillip Scheinberg ◽  
Ann Williams ◽  
Keyvan Keyvanfar ◽  
Melody Smith ◽  
...  

Abstract Abstract 2439 Poster Board II-416 It is generally assumed that T cell responses to HLA disparate targets arise from the naïve pool. However, the risk of graft-versus-host disease (GvHD) also increases if the donor has circulating T cells recognizing multiple persistent DNA viruses, suggesting that memory T cells may contribute to the overall alloresponse. We used a flow cytometric CFSE-based proliferation & activation (CD38 expression acquisition) assay to systematically assess the contribution of naïve and memory T cells to alloreactivity. In some experiments donor peripheral blood mononuclear cells (PBMC) were primed for 8 days with allogeneic, HLA mismatched PBMC (alloPBMC), after which the intracellular cytokine production (ICS) was examined upon rechallenge with autologous or allogeneic PBMC (alloPBMC). CFSE-labeled umbilical cord mononuclear cells (UCMC) from five donors were stimulated with an irradiated pool of HLA-disparate donor peripheral blood mononuclear cells (alloPBMC). By day 8, over 80% of the CD4+ and CD8+ T cells were CFSE[dim], i.e. had proliferated, and expressed the activation marker CD38, indicating that naïve T cells can mount an alloresponse. Next, PBMC from adult donors were separated into naïve (CD57-CD45RO-), memory (CD57-CD45RA- and CD57-CD62L- T cells), and effector (CD27-CD45RO-) T cells. We found that adult donor naïve T cells can also mount an alloresponse; importantly, both memory T cell subsets – and to a lesser extent, effector cells – were CFSE[dim]CD38+ at least to the same extent as naïve T cells, indicating their potential to respond to alloantigens in addition to their priming foreign antigen. These data were confirmed using a different approach: By first priming responder T cells with HLA-disparate donor PBMC for 8 days, followed by the enumeration of alloreactivity by ICS after stimulation with the original stimulator PBMC. To exclude reactivity of responder T cells with viral antigens present in PBMC (EBV; CMV), the experiment was repeated using activated T cells (T-APC) as antigen presenting cells, and yielded identical results. The direct ex vivo alloreactivity of T cell subsets was next tested by stimulating donor PBMC with HLA mismatched donor PBMC or activated T cells as APC in an 18 hour ICS. This experiment confirmed the rapid kinetics of alloreactivity and dominance of memory T cells in the alloresponse. Since a prominent role of memory T cells was apparent from our experiments we next tested T cells specific for DNA virus-derived antigens. EBV- and CMV-specific T cells, tested against a panel of 30 T-APC with a broad coverage of the most prominent HLA, displayed exquisite specificity for certain mismatched HLA alleles, indicating that DNA virus antigen-specific T cells may indeed cross-react with cellular antigens presented in the context of mismatched HLA class I and II proteins. Collectively our data demonstrate that both naïve and memory T cells mount an alloresponse, but that memory T cells are more rapidly and strongly recruited by alloantigen stimulation. These findings indicate that in man alloresponses are not confined to particular subsets of post-thymic T cells and that donor-derived viral antigen-specific T cells in an unrelated recipient may cross-react with peptide-MHC complexes against which they were not negatively selected. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Fengqin Fang ◽  
Wenqiang Cao ◽  
Weikang Zhu ◽  
Nora Lam ◽  
Lingjie Li ◽  
...  

Memory T cells exhibit considerable diversity that determines their ability to be protective and their durability. Here, we examined whether changes in T cell heterogeneity contribute to the age-associated failure of immune memory. By screening for age-dependent T cell surface markers, we have identified CD4 and CD8 memory T cell subsets that are unrelated to previously defined subsets of central and effector memory cells. Memory T cells expressing the ecto-5′-nucleotidase CD73 constitute a functionally distinct subset of memory T cells that declines with age. They exhibit many features favorable for immune protection, including longevity and polyfunctionality. They have a low turnover, but are poised to display effector functions and to develop into cells resembling tissue-resident memory T cells (TRM). Upstream regulators of differential chromatin accessibility and transcriptomes include transcription factors that are characteristic for conferring these superior memory features as well as facilitating CD73 expression. CD73 is not just a surrogate marker of these regulatory networks but is directly involved in T cell survival and TRM differentiation Interventions preventing the decline of this T cell subset or increasing CD73 expression have the potential to improve immune memory in older adults.


2019 ◽  
Author(s):  
Yasmin Vahidi ◽  
Mandana Bagheri ◽  
Abbas Ghaderi ◽  
Zahra Faghih

Abstract Background Human immunological memory is a hallmark of the adaptive immune system and plays an important role in the development of effective immune responses against tumors. In the present study, we aimed to determine the frequencies of CD8 + memory T cell subsets including stem memory T cells (TSCM) in tumor-draining lymph nodes of patients with breast cancer (BC).Methods Mononuclear cells were obtained from axillary lymph nodes of 52 untreated patients with BC and stained for CD8, CCR7, CD45RO, CD95 markers to detect different subtypes of memory cells in the CD8 + lymphocyte population. Data were acquired with four-color flow cytometry and analyzed with CellQuest Pro software.Results We observed that 47.65±2.66 of CD8+ lymphocytes expressed the CD45RO marker for memory T cells. Statistical analysis showed that the total frequency of central memory T cells (TCM) and their subset with low CD45RO expression was significantly higher in tumor-involved nodes compared to tumor-free ones (P=0.024 and P=0.017, respectively). Mean CD96 expression (based on mean fluorescence intensity) on the surface of TCM, their CD45RO hi TCM and CD45RO low subsets, and TSCM was higher in patients with stage II compared to those with stage I disease (P<0.05). The percentage of naive CD8 + T cells was significantly higher in tumor-involved lymph nodes compared to tumor-free ones (P=0.025).Conclusions Our data collectively indicate no significant differences in the frequencies of CD8 + lymphocytes or their memory T cell subsets in tumor-draining lymph nodes of patients with BC. However, the frequency of CD45 low TCM along with naive CD8 + lymphocytes was higher in tumor-involved nodes, which suggests that after long-term exposure to the antigen, and despite the immune reaction in order to provide a pool of effective memory cells, memory cell differentiation is blocked in early-stage (CD45RO low ) due to tumor-derived suppressive factors. Identifying the molecular and cellular mechanisms behind this suppression can provide invaluable tools for adoptive T cell therapies in cancer.


2021 ◽  
Vol 9 (1) ◽  
pp. e001807
Author(s):  
Chester Lai ◽  
George Coltart ◽  
Andrew Shapanis ◽  
Conor Healy ◽  
Ahmad Alabdulkareem ◽  
...  

BackgroundTumor infiltrating lymphocytes play a key role in antitumor responses; however, while several memory T-cell subtypes have been reported in inflammatory and neoplastic conditions, the proportional representation of the different subsets of memory T cells and their functional significance in cancer is unclear. Keratinocyte skin cancer is one of the most common cancers globally, with cutaneous squamous cell cancer (cSCC) among the most frequent malignancies capable of metastasis.MethodsMemory T-cell subsets were delineated in human cSCCs and, for comparison, in non-lesional skin and blood using flow cytometry. Immunohistochemistry was conducted to quantify CD103+ cells in primary human cSCCs which had metastasized (P-M) and primary cSCCs which had not metastasized (P-NM). TIMER2.0 (timer.cistrome.org) was used to analyze TCGA cancer survival data based on ITGAE expression. Immunofluorescence microscopy was performed to determine frequencies of CD8+CD103+ cells in P-M and P-NM cSCCs.ResultsDespite intertumoral heterogeneity, most cSCC T cells were CCR7−/CD45RA− effector/resident memory (TRM) lymphocytes, with naive, CD45RA+/CCR7− effector memory re-expressing CD45RA, CCR7+/L-selectin+ central memory and CCR7+/L-selectin− migratory memory lymphocytes accounting for smaller T-cell subsets. The cSCC CD8+ T-cell population contained a higher proportion of CD69+/CD103+ TRMs than that in non-lesional skin and blood. These cSCC CD69+/CD103+ TRMs exhibited increased IL-10 production, and higher CD39, CTLA-4 and PD-1 expression compared with CD103− TRMs in the tumor. CD103+ cells were more frequent in P-M than P-NM cSCCs. Analysis of TCGA data demonstrated that high expression of ITGAE (encoding CD103) was associated with reduced survival in primary cutaneous melanoma, breast carcinoma, renal cell carcinoma, kidney chromophobe cancer, adrenocortical carcinoma and lower grade glioma. Immunofluorescence microscopy showed that the majority of CD103 was present on CD8+ T cells and that CD8+CD103+ cells were significantly more frequent in P-M than P-NM cSCCs.ConclusionThese results highlight CD8+CD103+ TRMs as an important functional T-cell subset associated with poorer clinical outcome in this cancer.


Sign in / Sign up

Export Citation Format

Share Document