scholarly journals The Vif and Vpr accessory proteins independently cause HIV-1-induced T cell cytopathicity and cell cycle arrest

2006 ◽  
Vol 103 (9) ◽  
pp. 3369-3374 ◽  
Author(s):  
K. Sakai ◽  
J. Dimas ◽  
M. J. Lenardo
2020 ◽  
Author(s):  
Antonio Solis-Leal ◽  
Dalton C. Karlinsey ◽  
J. Brandon Lopez ◽  
Vicente Planelles ◽  
Brian D. Poole ◽  
...  

Abstract Background: Acquired immunodeficiency syndrome (AIDS) is caused when HIV depletes CD4+ helper T cell levels in infected patients. Distinct AIDS development rates have shown that there are Rapid Progressor (RP) and Long-Term Non-Progressor (LTNP) patients, but the circumstances governing these differences in the kinetics of helper T cell depletion are poorly understood. Mutations in the Viral Protein R (Vpr) gene have been suggested to have a direct impact on helper T cell depletion. Interactions of Vpr with both host and viral factors affect cellular activities such as cell cycle progression and apoptosis. The Vpr mutants R36W and R77Q have been associated with RP and LTNP phenotypes, respectively; however, these findings are still controversial. This study examines the effects that Vpr mutations have in the context of HIV-1 infection of the HUT78 T cell line, using replication-competent CXCR4-tropic virus strains. Results: Our results show a replication enhancement of the R36W mutant accompanied by increased cytotoxicity. Interestingly, the R77Q mutant showed a unique enhancement of apoptosis (measured by Annexin V and TUNEL staining) and G2 cell cycle arrest; these effects were not seen with WT, R36W or Vpr null viruses. Thus, point mutations in Vpr can exhibit profound differences in mechanisms and rates of cell killing. Conclusions: The vpr gene is thought to be an important virulence factor in Human Immunodeficiency Virus type 1 (HIV-1). Vpr polymorphisms have been associated with different rates of AIDS progression. However, there is controversy about the cytopathic and virulence phenotypes of Vpr mutants, with contradictory conclusions about the same mutants. Here, we examine the replication capacity, apoptotic induction, and G2 cell cycle arrest phenotypes of three vpr mutants compared to wild-type HIV-1. One mutant associated with rapid AIDS progression replicated more efficiently and killed cells more rapidly than wild-type HIV-1. Another mutant associated with slow AIDS progression triggered apoptosis more efficiently than wild-type HIV-1 and showed significant levels of G2 cell cycle arrest. These results shed additional light on the role of vpr polymorphisms in T cell killing by HIV-1 and may help to explain the role of Vpr in different rates of AIDS progression.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiaohong Zhou ◽  
Christina Monnie ◽  
Maria DeLucia ◽  
Jinwoo Ahn

Abstract Background Vpr is a virion-associated protein that is encoded by lentiviruses and serves to counteract intrinsic immunity factors that restrict infection. HIV-1 Vpr mediates proteasome-dependent degradation of several DNA repair/modification proteins. Mechanistically, Vpr directly recruits cellular targets onto DCAF1, a substrate receptor of Cullin 4 RING E3 ubiquitin ligase (CRL4) for poly-ubiquitination. Further, Vpr can mediate poly-ubiquitination of DCAF1-interacting proteins by the CRL4. Because Vpr-mediated degradation of its known targets can not explain the primary cell-cycle arrest phenotype that Vpr expression induces, we surveyed the literature for DNA-repair-associated proteins that interact with the CRL4-DCAF1. One such protein is SIRT7, a deacetylase of histone 3 that belongs to the Sirtuin family and regulates a wide range of cellular processes. We wondered whether Vpr can mediate degradation of SIRT7 via the CRL4-DCAF1. Methods HEK293T cells were transfected with cocktails of plasmids expressing DCAF1, DDB1, SIRT7 and Vpr. Ectopic and endogeneous levels of SIRT7 were monitered by immunoblotting and protein–protein interactions were assessed by immunoprecipitation. For in vitro reconstitution assays, recombinant CRL4-DCAF1-Vpr complexes and SIRT7 were prepared and poly-ubiqutination of SIRT7 was monitored with immunoblotting. Results We demonstrate SIRT7 polyubiquitination and degradation upon Vpr expression. Specifically, SIRT7 is shown to interact with the CRL4-DCAF1 complex, and expression of Vpr in HEK293T cells results in SIRT7 degradation, which is partially rescued by CRL inhibitor MNL4924 and proteasome inhibitor MG132. Further, in vitro reconstitution assays show that Vpr induces poly-ubiquitination of SIRT7 by the CRL4-DCAF1. Importantly, we find that Vpr from several different HIV-1 strains, but not HIV-2 strains, mediates SIRT7 poly-ubiquitination in the reconstitution assay and degradation in cells. Finally, we show that SIRT7 degradation by Vpr is independent of the known, distinctive phenotype of Vpr-induced cell cycle arrest at the G2 phase, Conclusions Targeting histone deacetylase SIRT7 for degradation is a conserved feature of HIV-1 Vpr. Altogether, our findings reveal that HIV-1 Vpr mediates down-regulation of SIRT7 by a mechanism that does not involve novel target recruitment to the CRL4-DCAF1 but instead involves regulation of the E3 ligase activity.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Christophe Nicot

Tumor suppressor functions are essential to control cellular proliferation, to activate the apoptosis or senescence pathway to eliminate unwanted cells, to link DNA damage signals to cell cycle arrest checkpoints, to activate appropriate DNA repair pathways, and to prevent the loss of adhesion to inhibit initiation of metastases. Therefore, tumor suppressor genes are indispensable to maintaining genetic and genomic integrity. Consequently, inactivation of tumor suppressors by somatic mutations or epigenetic mechanisms is frequently associated with tumor initiation and development. In contrast, reactivation of tumor suppressor functions can effectively reverse the transformed phenotype and lead to cell cycle arrest or death of cancerous cells and be used as a therapeutic strategy. Adult T-cell leukemia/lymphoma (ATLL) is an aggressive lymphoproliferative disease associated with infection of CD4 T cells by the Human T-cell Leukemia Virus Type 1 (HTLV-I). HTLV-I-associated T-cell transformation is the result of a multistep oncogenic process in which the virus initially induces chronic T-cell proliferation and alters cellular pathways resulting in the accumulation of genetic defects and the deregulated growth of virally infected cells. This review will focus on the current knowledge of the genetic and epigenetic mechanisms regulating the inactivation of tumor suppressors in the pathogenesis of HTLV-I.


2008 ◽  
Vol 27 (5) ◽  
pp. 267-277 ◽  
Author(s):  
Jiangfang Wang ◽  
Jason M. Shackelford ◽  
Nithianandan Selliah ◽  
Debra K. Shivers ◽  
Eduardo O’Neill ◽  
...  

Immunology ◽  
2013 ◽  
Vol 138 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Sarah S. Zaher ◽  
David Coe ◽  
Jian-Guo Chai ◽  
Daniel F.P. Larkin ◽  
Andrew J.T. George

2020 ◽  
Vol 527 (1) ◽  
pp. 257-263
Author(s):  
Kayoko Nagata ◽  
Keisuke Shindo ◽  
Yusuke Matsui ◽  
Kotaro Shirakawa ◽  
Akifumi Takaori-Kondo

2003 ◽  
Vol 77 (7) ◽  
pp. 3962-3972 ◽  
Author(s):  
Betty Poon ◽  
Irvin S. Y. Chen

ABSTRACT Retroviral DNA synthesized prior to integration, termed unintegrated viral DNA, is classically believed to be transcriptionally inert and to serve only as a precursor to the transcriptionally active integrated proviral DNA form. However, it has recently been found to be expressed under some circumstances during human immunodeficiency virus type 1 (HIV-1) replication and may play a significant role in HIV-1 pathogenesis. HIV-1 Vpr is a virion-associated accessory protein that is critical for HIV-1 replication in nondividing cells and induces cell cycle arrest and apoptosis. We find that Vpr, either expressed de novo or released from virions following viral entry, is essential for unintegrated viral DNA expression. HIV-1 mutants defective for integration in either the integrase catalytic domain or the cis-acting att sites can express unintegrated viral DNA at levels similar to that of wild-type HIV-1, but only in the presence of Vpr. In the absence of Vpr, the expression of unintegrated viral DNA decreases 10- to 20-fold. Vpr does not affect the efficiency of integration from integrase-defective HIV-1. Vpr-mediated enhancement of expression from integrase-defective HIV-1 requires that the viral DNA be generated in cells through infection and is mediated via a template that declines over time. Vpr activation of expression does not require exclusive nuclear localization of Vpr nor does it correlate with Vpr-mediated cell cycle arrest. These results attribute a new function to HIV-1 Vpr and implicate Vpr as a critical component in expression from unintegrated HIV-1 DNA.


Sign in / Sign up

Export Citation Format

Share Document