scholarly journals Suppression of the allogeneic response by the anti-allergy drugN-(3,4-dimethoxycinnamonyl) anthranilic acid results from T-cell cycle arrest

Immunology ◽  
2013 ◽  
Vol 138 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Sarah S. Zaher ◽  
David Coe ◽  
Jian-Guo Chai ◽  
Daniel F.P. Larkin ◽  
Andrew J.T. George
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Christophe Nicot

Tumor suppressor functions are essential to control cellular proliferation, to activate the apoptosis or senescence pathway to eliminate unwanted cells, to link DNA damage signals to cell cycle arrest checkpoints, to activate appropriate DNA repair pathways, and to prevent the loss of adhesion to inhibit initiation of metastases. Therefore, tumor suppressor genes are indispensable to maintaining genetic and genomic integrity. Consequently, inactivation of tumor suppressors by somatic mutations or epigenetic mechanisms is frequently associated with tumor initiation and development. In contrast, reactivation of tumor suppressor functions can effectively reverse the transformed phenotype and lead to cell cycle arrest or death of cancerous cells and be used as a therapeutic strategy. Adult T-cell leukemia/lymphoma (ATLL) is an aggressive lymphoproliferative disease associated with infection of CD4 T cells by the Human T-cell Leukemia Virus Type 1 (HTLV-I). HTLV-I-associated T-cell transformation is the result of a multistep oncogenic process in which the virus initially induces chronic T-cell proliferation and alters cellular pathways resulting in the accumulation of genetic defects and the deregulated growth of virally infected cells. This review will focus on the current knowledge of the genetic and epigenetic mechanisms regulating the inactivation of tumor suppressors in the pathogenesis of HTLV-I.


2014 ◽  
Vol 11 (8) ◽  
pp. 8567-8580 ◽  
Author(s):  
Xi Peng ◽  
Keying Zhang ◽  
Shiping Bai ◽  
Xuemei Ding ◽  
Qiufeng Zeng ◽  
...  

1997 ◽  
Vol 71 (3) ◽  
pp. 1956-1962 ◽  
Author(s):  
K G Low ◽  
L F Dorner ◽  
D B Fernando ◽  
J Grossman ◽  
K T Jeang ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4917-4917
Author(s):  
Esperanza Martin-Sanchez ◽  
Socorro M. Rodriguez-Pinilla ◽  
Luis Lombardia ◽  
Margarita Sanchez-Beato ◽  
Beatriz Dominguez-Gonzalez ◽  
...  

Abstract Abstract 4917 T-cell lymphomas (TCL) are a heterogeneous group of aggressive malignancies lacking specific and efficient therapy. Unfortunately, there are neither animal models nor representative cell lines for most TCL types, making functional and pharmacogenomics studies even more difficult. PI3K and PIM are kinases involved in cell proliferation, frequently altered in human cancer that seems to play a critical role in T-cell development and activation. Genomic studies have identified PIK3CD subunit to be significantly associated with in activation of CD40, NF-kB and TCR-pathways. The aim of this project is to determine the efficiency of PI3K inhibitors (PI3Ki) and PIM inhibitors (PIMi) in TCL, looking for biomarkers of their mechanism of action and to identify markers that could identify responders from non-responders. Twenty PTCL and seven reactive lymph nodes were studied using gene expression microarrays. We performed an in silico analysis using the Connectivity Map program to identify drugs that could potentially reverse PTCL gene expression signature. Among them, several PI3K/mTOR inhibitors were found. A panel of 6 TCL cell lines belonging to different TCL subgroups were treated with 3 PI3Ki (LY294002, ETP-45658, GDC-0941) and one PIMi (ETP-39010). Functional studies were also done to establish the role of each of the targeted genes. In vitro studies showed that PI3Ki induced G1 cell cycle arrest in all cell lines, and apoptosis in a portion of them, in a time/dose-dependent manner. We also observed a decrease in the levels of pAKT(S473), pGSK3B(S9) and p-p70S6K(T389) after treatment. In addition, both the analysis of the PTCL gene expression signature as well as western blot studies on TCL cell lines has shown overexpression of PIM family genes, A decrease in cell viability, and a strong induction of apoptosis in all cell lines was seen after PIM inhibition, without cell cycle arrest. Several diagnostic and pharmacodynamic biomarkers of PIMi have been identified at the mRNA and protein level in both cell lines In conclusion, our results indicate that PI3Ki and PIMi are effective therapeutic approaches for TCLs, identifying potential markers for patient's stratification and pharmacodynamic assessment. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Gaomei Chang ◽  
Wenqin Xiao ◽  
Zhijian Xu ◽  
Dandan Yu ◽  
Bo Li ◽  
...  

Pterostilbene is a natural 3,5-dimethoxy analog oftrans-resveratrol that has been reported to have antitumor, antioxidant, and anti-inflammatory effects. T-cell leukemia/lymphoma is one of the more aggressive yet uncommon non-Hodgkin lymphomas. Although there has been increasing research into T-cell leukemia/lymphoma, the molecular mechanisms of the antitumor effects of pterostilbene against this malignancy are still largely unknown. The aim of this study is to confirm the effects of pterostilbene in T-cell leukemia/lymphoma. Jurkat and Hut-78 cells treated with pterostilbene were evaluated for cell proliferation using Cell Counting Kit-8, and apoptosis, cell cycle progression, reactive oxygen species generation, and mitochondrial membrane potential were analyzed using flow cytometry. The level of protein expression was detected by western blot. The results demonstrated that pterostilbene significantly inhibited the growth of T-cell leukemia/lymphoma cell lines in vitro and induced apoptosis in a dose- and time-dependent manner. Moreover, pterostilbene treatment markedly induced S-phase cell cycle arrest, which was accompanied by downregulation of cdc25A, cyclin A2, and CDK2. Pterostilbene also induced the generation of reactive oxygen species and the loss of mitochondrial membrane potential and inhibited ERK1/2 phosphorylation. Taken together, our study demonstrated the potential of pterostilbene to be an effective treatment for T-cell leukemia/lymphoma.


Sign in / Sign up

Export Citation Format

Share Document