scholarly journals The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis

2009 ◽  
Vol 106 (14) ◽  
pp. 5889-5894 ◽  
Author(s):  
N. C. Reading ◽  
D. A. Rasko ◽  
A. G. Torres ◽  
V. Sperandio
2019 ◽  
Author(s):  
Nicolás M. Reinoso-Vizcaíno ◽  
Melina B. Cian ◽  
Paulo R. Cortes ◽  
Nadia B. Olivero ◽  
Mirelys Hernandez-Morfa ◽  
...  

AbstractThe virus-bacterial synergism implicated in secondary bacterial infections caused by Streptococcus pneumoniae following infection with epidemic or pandemic influenza A virus (IAV) is well documented. However, the molecular mechanisms behind such synergism remain largely ill-defined. In pneumocytes infected with influenza A virus, subsequent infection with S. pneumoniae leads to enhanced pneumococcal intracellular survival. The pneumococcal two-component system VisRH appears essential for such enhanced survival. Through comparative transcriptomic analysis between the ΔvisR and wt strains, a list of 179 differentially expressed genes was defined. Among those, the clpL protein chaperone gene and the psaB Mn+2 transporter gene, which are involved in the stress response, are important in enhancing S. pneumoniae survival in influenza-infected cells. The ΔvisR, ΔclpL and ΔpsaB deletion mutants display increased susceptibility to acidic and oxidative stress and no enhancement of intracellular survival in IAV-infected pneumocyte cells. These results suggest that the VisRH two-component system senses IAV-induced stress conditions and controls adaptive responses that allow survival of S. pneumoniae in IAV-infected pneumocytes.Author summaryS. pneumoniae is an inhabitant of the human nasopharynx that is capable of causing a variety of infections contributing to an estimated 1.6 million deaths each year. Many of these deaths occur as result of secondary S. pneumoniae infections following seasonal or pandemic influenza. Although S. pneumoniae is considered a typical extracellular pathogen, an intracellular survival mechanism has been more recently recognized as significant in bacterial pathogenesis. The synergistic effects between influenza A and S. pneumoniae in secondary bacterial infection are well documented; however, the effects of influenza infections on intracellular survival of S. pneumoniae are ill-defined. Here, we provide evidence that influenza infection increases S. pneumoniae intracellular survival in pneumocytes. We demonstrate that the poorly understood VisRH signal transduction system in pneumococcus controls the expression of genes involved in the stress response that S. pneumoniae needs to increase intracellular survival in influenza A-infected pneumocytes. These findings have important implications for understanding secondary bacterial pathogenesis following influenza and for the treatment of such infections in influenza-stricken patients.


2020 ◽  
Vol 202 (16) ◽  
Author(s):  
Srujana S. Yadavalli ◽  
Ted Goh ◽  
Jeffrey N. Carey ◽  
Gabriele Malengo ◽  
Sangeevan Vellappan ◽  
...  

ABSTRACT The PhoQ/PhoP two-component system plays a vital role in the regulation of Mg2+ homeostasis, resistance to acid and hyperosmotic stress, cationic antimicrobial peptides, and virulence in Escherichia coli, Salmonella, and related bacteria. Previous studies have shown that MgrB, a 47-amino-acid membrane protein that is part of the PhoQ/PhoP regulon, inhibits the histidine kinase PhoQ. MgrB is part of a negative-feedback loop modulating this two-component system that prevents hyperactivation of PhoQ and may also provide an entry point for additional input signals for the PhoQ/PhoP pathway. To explore the mechanism of action of MgrB, we analyzed the effects of point mutations, C-terminal truncations, and transmembrane (TM) region swaps on MgrB activity. In contrast to two other known membrane protein regulators of histidine kinases in E. coli, we found that the MgrB TM region is necessary for PhoQ inhibition. Our results indicate that the TM region mediates interactions with PhoQ and that W20 is a key residue for PhoQ/MgrB complex formation. Additionally, mutations of the MgrB cytosolic region suggest that the two N-terminal lysines play an important role in regulating PhoQ activity. Alanine-scanning mutagenesis of the periplasmic region of MgrB further indicated that, with the exception of a few highly conserved residues, most residues are not essential for MgrB’s function as a PhoQ inhibitor. Our results indicate that the regulatory function of the small protein MgrB depends on distinct contributions from multiple residues spread across the protein. Interestingly, the TM region also appears to interact with other noncognate histidine kinases in a bacterial two-hybrid assay, suggesting a potential route for evolving new small-protein modulators of histidine kinases. IMPORTANCE One of the primary means by which bacteria adapt to their environment is through pairs of proteins consisting of a sensor and a response regulator. A small membrane protein, MgrB, impedes the activity of sensor protein PhoQ, thereby affecting the expression of PhoQ regulated virulence genes in pathogenic bacteria. However, it is unknown how such a small protein modulates the activity of PhoQ. Here, we studied the functional determinants of MgrB and identified specific amino acids critical for the protein's inhibitory function. Notably, we find that the membrane-spanning region is important for MgrB interaction with PhoQ. Additionally, this region appears to physically interact with other sensors, a property that may be important for evolving small protein regulators of sensor kinases.


2018 ◽  
Author(s):  
Srujana S Yadavalli ◽  
Ted Goh ◽  
Jeffrey N Carey ◽  
Gabriele Malengo ◽  
Sangeevan Vellappan ◽  
...  

AbstractThe PhoQ/PhoP two-component system plays a vital role in the regulation of Mg2+ homeostasis, resistance to acid and hyperosmotic stress, cationic antimicrobial peptides, and virulence in Escherichia coli, Salmonella and related bacteria. Previous studies have shown that MgrB, a 47 amino acid membrane protein that is part of the PhoQ/PhoP regulon, inhibits the histidine kinase PhoQ. MgrB is part of a negative feedback loop modulating this two-component system that prevents hyperactivation of PhoQ and may also provide an entry point for additional input signals for the PhoQ/PhoP pathway. To explore the mechanism of action of MgrB, we have analyzed the effects of point mutations, C-terminal truncations and transmembrane region swaps on MgrB activity. In contrast with two other known membrane protein regulators of histidine kinases in E. coli, we find that the MgrB TM region is necessary for PhoQ inhibition. Our results indicate that the TM region mediates interactions with PhoQ and that W20 is a key residue for PhoQ/MgrB complex formation. Additionally, mutations of the MgrB cytosolic region suggest that the two N-terminal lysines play an important role in regulating PhoQ activity. Alanine scanning mutagenesis of the periplasmic region of MgrB further indicates that, with the exception of a few highly conserved residues, most residues are not essential for MgrB’s function as a PhoQ inhibitor. Our results indicate that the regulatory function of the small protein MgrB depends on distinct contributions from multiple residues spread across the protein. Interestingly, the TM region also appears to interact with other non-cognate histidine kinases in a bacterial two-hybrid assay, suggesting a potential route for evolving new small protein modulators of histidine kinases.


2004 ◽  
Vol 48 (8) ◽  
pp. 2888-2896 ◽  
Author(s):  
Thorsten Mascher ◽  
Sara L. Zimmer ◽  
Terry-Ann Smith ◽  
John D. Helmann

ABSTRACT Soil bacteria are among the most prodigious producers of antibiotics. The Bacillus subtilis LiaRS (formerly YvqCE) two-component system is one of several antibiotic-sensing systems that coordinate the genetic response to cell wall-active antibiotics. Upon the addition of vancomycin or bacitracin, LiaRS autoregulates the liaIHGFSR operon. We have characterized the promoter of the lia operon and defined the cis-acting sequences necessary for antibiotic-inducible gene expression. A survey for compounds that act as inducers of the lia promoter revealed that it responds strongly to a subset of cell wall-active antibiotics that interfere with the lipid II cycle in the cytoplasmic membrane (bacitracin, nisin, ramoplanin, and vancomycin). Chemicals that perturb the cytoplasmic membrane, such as organic solvents, are also weak inducers. Thus, the reporter derived from P liaI (the liaI promoter) provides a tool for the detection and classification of antimicrobial compounds.


2021 ◽  
pp. 103851
Author(s):  
Yan Ma ◽  
Yingying Zhang ◽  
Ke Chen ◽  
Lingzhu Zhang ◽  
Yibei Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document