scholarly journals Whole-genome sequencing and microarray analysis of ex vivo Plasmodium vivax reveal selective pressure on putative drug resistance genes

2010 ◽  
Vol 107 (46) ◽  
pp. 20045-20050 ◽  
Author(s):  
N. V. Dharia ◽  
A. T. Bright ◽  
S. J. Westenberger ◽  
S. W. Barnes ◽  
S. Batalov ◽  
...  
mBio ◽  
2015 ◽  
Vol 6 (4) ◽  
Author(s):  
Nicole D. Pecora ◽  
Ning Li ◽  
Marc Allard ◽  
Cong Li ◽  
Esperanza Albano ◽  
...  

ABSTRACT Carbapenem-resistant Enterobacteriaceae (CRE) are an urgent public health concern. Rapid identification of the resistance genes, their mobilization capacity, and strains carrying them is essential to direct hospital resources to prevent spread and improve patient outcomes. Whole-genome sequencing allows refined tracking of both chromosomal traits and associated mobile genetic elements that harbor resistance genes. To enhance surveillance of CREs, clinical isolates with phenotypic resistance to carbapenem antibiotics underwent whole-genome sequencing. Analysis of 41 isolates of Klebsiella pneumoniae and Enterobacter cloacae, collected over a 3-year period, identified K. pneumoniae carbapenemase (KPC) genes encoding KPC-2, −3, and −4 and OXA-48 carbapenemases. All occurred within transposons, including multiple Tn4401 transposon isoforms, embedded within more than 10 distinct plasmids representing incompatibility (Inc) groups IncR, -N, -A/C, -H, and -X. Using short-read sequencing, draft maps were generated of new KPC-carrying vectors, several of which were derivatives of the IncN plasmid pBK31551. Two strains also had Tn4401 chromosomal insertions. Integrated analyses of plasmid profiles and chromosomal single-nucleotide polymorphism (SNP) profiles refined the strain patterns and provided a baseline hospital mobilome to facilitate analysis of new isolates. When incorporated with patient epidemiological data, the findings identified limited outbreaks against a broader 3-year period of sporadic external entry of many different strains and resistance vectors into the hospital. These findings highlight the utility of genomic analyses in internal and external surveillance efforts to stem the transmission of drug-resistant strains within and across health care institutions. IMPORTANCE We demonstrate how detection of resistance genes within mobile elements and resistance-carrying strains furthers active surveillance efforts for drug resistance. Whole-genome sequencing is increasingly available in hospital laboratories and provides a powerful and nuanced means to define the local landscape of drug resistance. In this study, isolates of Klebsiella pneumoniae and Enterobacter cloacae with resistance to carbapenem antibiotics were sequenced. Multiple carbapenemase genes were identified that resided in distinct transposons and plasmids. This mobilome, or population of mobile elements capable of mobilizing drug resistance, further highlighted the degree of strain heterogeneity while providing a detailed timeline of carbapenemase entry into the hospital over a 3-year period. These surveillance efforts support effective targeting of infection control resources and the development of institution-specific repositories of resistance genes and the mobile elements that carry them.


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Annie N. Cowell ◽  
Dorothy E. Loy ◽  
Sesh A. Sundararaman ◽  
Hugo Valdivia ◽  
Kathleen Fisch ◽  
...  

ABSTRACT Whole-genome sequencing (WGS) of microbial pathogens from clinical samples is a highly sensitive tool used to gain a deeper understanding of the biology, epidemiology, and drug resistance mechanisms of many infections. However, WGS of organisms which exhibit low densities in their hosts is challenging due to high levels of host genomic DNA (gDNA), which leads to very low coverage of the microbial genome. WGS of Plasmodium vivax , the most widely distributed form of malaria, is especially difficult because of low parasite densities and the lack of an ex vivo culture system. Current techniques used to enrich P. vivax DNA from clinical samples require significant resources or are not consistently effective. Here, we demonstrate that selective whole-genome amplification (SWGA) can enrich P. vivax gDNA from unprocessed human blood samples and dried blood spots for high-quality WGS, allowing genetic characterization of isolates that would otherwise have been prohibitively expensive or impossible to sequence. We achieved an average genome coverage of 24×, with up to 95% of the P. vivax core genome covered by ≥5 reads. The single-nucleotide polymorphism (SNP) characteristics and drug resistance mutations seen were consistent with those of other P. vivax sequences from a similar region in Peru, demonstrating that SWGA produces high-quality sequences for downstream analysis. SWGA is a robust tool that will enable efficient, cost-effective WGS of P. vivax isolates from clinical samples that can be applied to other neglected microbial pathogens. IMPORTANCE Malaria is a disease caused by Plasmodium parasites that caused 214 million symptomatic cases and 438,000 deaths in 2015. Plasmodium vivax is the most widely distributed species, causing the majority of malaria infections outside sub-Saharan Africa. Whole-genome sequencing (WGS) of Plasmodium parasites from clinical samples has revealed important insights into the epidemiology and mechanisms of drug resistance of malaria. However, WGS of P. vivax is challenging due to low parasite levels in humans and the lack of a routine system to culture the parasites. Selective whole-genome amplification (SWGA) preferentially amplifies the genomes of pathogens from mixtures of target and host gDNA. Here, we demonstrate that SWGA is a simple, robust method that can be used to enrich P. vivax genomic DNA (gDNA) from unprocessed human blood samples and dried blood spots for cost-effective, high-quality WGS.


2017 ◽  
Vol 55 (6) ◽  
pp. 1871-1882 ◽  
Author(s):  
Joseph Shea ◽  
Tanya A. Halse ◽  
Pascal Lapierre ◽  
Matthew Shudt ◽  
Donna Kohlerschmidt ◽  
...  

ABSTRACTWhole-genome sequencing (WGS) is a newer alternative for tuberculosis (TB) diagnostics and is capable of providing rapid drug resistance profiles while performing species identification and capturing the data necessary for genotyping. Our laboratory developed and validated a comprehensive and sensitive WGS assay to characterizeMycobacterium tuberculosisand otherM. tuberculosiscomplex (MTBC) strains, composed of a novel DNA extraction, optimized library preparation, paired-end WGS, and an in-house-developed bioinformatics pipeline. This new assay was assessed using 608 MTBC isolates, with 146 isolates during the validation portion of this study and 462 samples received prospectively. In February 2016, this assay was implemented to test all clinical cases of MTBC in New York State, including isolates and early positive Bactec mycobacterial growth indicator tube (MGIT) 960 cultures from primary specimens. Since the inception of the assay, we have assessed the accuracy of identification of MTBC strains to the species level, concordance with culture-based drug susceptibility testing (DST), and turnaround time. Species identification by WGS was determined to be 99% accurate. Concordance between drug resistance profiles generated by WGS and culture-based DST methods was 96% for eight drugs, with an average resistance-predictive value of 93% and susceptible-predictive value of 96%. This single comprehensive WGS assay has replaced seven molecular assays and has resulted in resistance profiles being reported to physicians an average of 9 days sooner than with culture-based DST for first-line drugs and 32 days sooner for second-line drugs.


2020 ◽  
Author(s):  
Mei Liu ◽  
Peng Xu ◽  
Xingwei Liao ◽  
Qing Li ◽  
Wei Chen ◽  
...  

Abstract BACKGROUND Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB), remains a severe public health problem globally. Guizhou has the fourth highest TB report rate of pulmonary TB around China. Uncovering the current status of TB epidemic, and distinguishing disease caused by recent or remote infections are the key issue to formulate effective prevention and control strategy. However, these data are limited in Guizhou. In this study, we aimed to investigate the transmission and drug-resistance profiles of TB in Luodian, a highest TB incidence and resources limited area in Guizhou, China. METHODS During 22 May 2018 to 21 April 2019, individuals with positive MTB culture were enrolled, all of them accepted the standardized interview. MTB isolates were performed whole genome sequencing. The prevalence of MTB genotypes, the genomic cluster rate and drug-resistance conferring mutations were analyzed based on the sequencing data. RESULTS A total of 107 cases were enrolled, of which 64.5% were male, and the median age of the patients was 51 years old (interquartile range, 40–65 years old). 84% patient were new case while 16% were retreated cases. All cases excepted three came from nine towns, and 55.1% of cases were from Longping and Bianyang. The phylogeny tree showed that 53.3% of strains were Lineage 2 (Beijing genotype), while 46.7% were Lineage 4 (Euro-American genotype). Among Lineage 2 strains, 66.7% were modern Beijing. Seven clusters with genomic distance within 12 SNVs were identified. The clusters included 14 strains, accounting for a cluster rate of 13.1%. The distance of clustered cases was between 2.1 to 71 kilometers (Km), with a media distance of 14 Km (interquartile range, 2.8–38 Km). Cases of two clusters came from the same town. Based on the gene mutations associated to drug-resistance, we predicted that 4.8% was resistant to isoniazid, 3.7% to rifampicin, 3.7% to streptomycin, and only one strain (0.9%) was multidrug resistance (MDR). CONLUSIONS: The study found high transmission and low drug-resistance rate in Luodian, and sublineages of modern Beijing branch had recent expansion in Luodian. this work also may serve as a genomic baseline to study the evolution and spread of MTB in Guizhou.


mSystems ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Yuan Wu ◽  
Chen Liu ◽  
Wen-Ge Li ◽  
Jun-Li Xu ◽  
Wen-Zhu Zhang ◽  
...  

ABSTRACTHorizontal gene transfer of mobile genetic elements (MGEs) accounts for the mosaic genome ofClostridium difficile, leading to acquisition of new phenotypes, including drug resistance and reconstruction of the genomes. MGEs were analyzed according to the whole-genome sequences of 37C. difficileisolates with a variety of sequence types (STs) within clade 4 from China. Great diversity was found in each transposon even within isolates with the same ST. Two novel transposons were identified in isolates ZR9 and ZR18, of which approximately one third to half of the genes showed heterogenous origins compared with the usual intestinal bacterial genes. Most importantly,catD, known to be harbored by Tn4453a/b, was replaced byaac(6′) aph(2′′)in isolates 2, 7, and 28. This phenomenon illustrated the frequent occurrence of gene exchanges betweenC. difficileand other enterobacteria with individual heterogeneity. Numerous prophages and CRISPR arrays were identified inC. difficileisolates of clade 4. Approximately 20% of spacers were located in prophage-carried CRISPR arrays, providing a new method for typing and tracing the origins of closely related isolates, as well as in-depth studies of the mechanism underlying genome remodeling. The rates of drug resistance were obviously higher than those reported previously around the world, although all isolates retained high sensitivity to vancomycin and metronidazole. The increasing number ofC. difficileisolates resistant to all antibiotics tested here suggests the ease with which resistance is acquiredin vivo. This study gives insights into the genetic mechanism of microevolution within clade 4.IMPORTANCEMobile genetic elements play a key role in the continuing evolution ofClostridium difficile, resulting in the emergence of new phenotypes for individual isolates. On the basis of whole-genome sequencing analysis, we comprehensively explored transposons, CRISPR, prophage, and genetic sites for drug resistance within clade 4C. difficileisolates with different sequence types. Great diversity in MGEs and a high rate of multidrug resistance were found within this clade, including new transposons, Tn4453a/bwithaac(6′) aph(2′′)instead ofcatD, and a relatively high rate of prophage-carried CRISPR arrays. These findings provide important new insights into the mechanism of genome remodeling within clade 4 and offer a new method for typing and tracing the origins of closely related isolates.


2019 ◽  
Vol 57 (9) ◽  
Author(s):  
Xuebing Wang ◽  
Haijian Zhou ◽  
Dongke Chen ◽  
Pengcheng Du ◽  
Ruiting Lan ◽  
...  

ABSTRACT Corynebacterium striatum is an emerging multidrug-resistant (MDR) pathogen that occurs primarily among immunocompromised and chronically ill patients. However, little is known about the genomic diversity of C. striatum, which contributes to its long-term persistence and transmission in hospitals. In this study, a total of 192 C. striatum isolates obtained from 14 September 2017 to 29 March 2018 in a hospital in Beijing, China, were analyzed by antimicrobial susceptibility testing and pulsed-field gel electrophoresis (PFGE). Whole-genome sequencing was conducted on 91 isolates. Nearly all isolates (96.3%, 183/190) were MDR. The highest resistance rate was observed for ciprofloxacin (99.0%, 190/192), followed by cefotaxime (90.6%, 174/192) and erythromycin (89.1%, 171/192). PFGE separated the 192 isolates into 79 pulsotypes, and differences in core genome single-nucleotide polymorphisms (SNPs) partitioned the 91 isolates sequenced into four clades. Isolates of the same pulsotype were identical or nearly identical at the genome level, with some exceptions. Two dominant subclones, clade 3a, and clade 4a, were responsible for the hospital-wide dissemination. Genomic analysis further revealed nine resistance genes mobilized by eight unique cassettes. PFGE and whole-genome sequencing revealed that the C. striatum isolates studied were the result mainly of predominant clones spreading in the hospital. C. striatum isolates in the hospital progressively acquired resistance to antimicrobial agents, demonstrating that isolates of C. striatum may adapt rapidly through the acquisition and accumulation of resistance genes and thus evolve into dominant and persistent clones. These insights will be useful for the prevention of C. striatum infection in hospitals.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Sebastian M. Gygli ◽  
Peter M. Keller ◽  
Marie Ballif ◽  
Nicolas Blöchliger ◽  
Rico Hömke ◽  
...  

ABSTRACTWhole-genome sequencing allows rapid detection of drug-resistantMycobacterium tuberculosisisolates. However, the availability of high-quality data linking quantitative phenotypic drug susceptibility testing (DST) and genomic data have thus far been limited. We determined drug resistance profiles of 176 genetically diverse clinicalM. tuberculosisisolates from the Democratic Republic of the Congo, Ivory Coast, Peru, Thailand, and Switzerland by quantitative phenotypic DST for 11 antituberculous drugs using the BD Bactec MGIT 960 system and 7H10 agar dilution to generate a cross-validated phenotypic DST readout. We compared DST results with predicted drug resistance profiles inferred by whole-genome sequencing. Classification of strains by the two phenotypic DST methods into resistotype/wild-type populations was concordant in 73 to 99% of cases, depending on the drug. Our data suggest that the established critical concentration (5 mg/liter) for ethambutol resistance (MGIT 960 system) is too high and misclassifies strains as susceptible, unlike 7H10 agar dilution. Increased minimal inhibitory concentrations were explained by mutations identified by whole-genome sequencing. Using whole-genome sequences, we were able to predict quantitative drug resistance levels for the majority of drug resistance mutations. Predicting quantitative levels of drug resistance by whole-genome sequencing was partially limited due to incompletely understood drug resistance mechanisms. The overall sensitivity and specificity of whole-genome-based DST were 86.8% and 94.5%, respectively. Despite some limitations, whole-genome sequencing has the potential to infer resistance profiles without the need for time-consuming phenotypic methods.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Keira A. Cohen ◽  
Abigail L. Manson ◽  
Christopher A. Desjardins ◽  
Thomas Abeel ◽  
Ashlee M. Earl

Sign in / Sign up

Export Citation Format

Share Document