scholarly journals Whole-Genome Sequencing for Drug Resistance Profile Prediction inMycobacterium tuberculosis

2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Sebastian M. Gygli ◽  
Peter M. Keller ◽  
Marie Ballif ◽  
Nicolas Blöchliger ◽  
Rico Hömke ◽  
...  

ABSTRACTWhole-genome sequencing allows rapid detection of drug-resistantMycobacterium tuberculosisisolates. However, the availability of high-quality data linking quantitative phenotypic drug susceptibility testing (DST) and genomic data have thus far been limited. We determined drug resistance profiles of 176 genetically diverse clinicalM. tuberculosisisolates from the Democratic Republic of the Congo, Ivory Coast, Peru, Thailand, and Switzerland by quantitative phenotypic DST for 11 antituberculous drugs using the BD Bactec MGIT 960 system and 7H10 agar dilution to generate a cross-validated phenotypic DST readout. We compared DST results with predicted drug resistance profiles inferred by whole-genome sequencing. Classification of strains by the two phenotypic DST methods into resistotype/wild-type populations was concordant in 73 to 99% of cases, depending on the drug. Our data suggest that the established critical concentration (5 mg/liter) for ethambutol resistance (MGIT 960 system) is too high and misclassifies strains as susceptible, unlike 7H10 agar dilution. Increased minimal inhibitory concentrations were explained by mutations identified by whole-genome sequencing. Using whole-genome sequences, we were able to predict quantitative drug resistance levels for the majority of drug resistance mutations. Predicting quantitative levels of drug resistance by whole-genome sequencing was partially limited due to incompletely understood drug resistance mechanisms. The overall sensitivity and specificity of whole-genome-based DST were 86.8% and 94.5%, respectively. Despite some limitations, whole-genome sequencing has the potential to infer resistance profiles without the need for time-consuming phenotypic methods.


2018 ◽  
Author(s):  
Sebastian M. Gygli ◽  
Peter M. Keller ◽  
Marie Ballif ◽  
Nicolas Blöchliger ◽  
Rico Hömke ◽  
...  

AbstractWhole genome sequencing allows rapid detection of drug-resistant M. tuberculosis isolates. However, high-quality data linking quantitative phenotypic drug susceptibility testing (DST) and genomic data have thus far been lacking.We determined drug resistance profiles of 176 genetically diverse clinical M. tuberculosis isolates from Democratic Republic of the Congo, Ivory Coast, Peru, Thailand and Switzerland by quantitative phenotypic DST for 11 antituberculous drugs using the BD BACTEC MGIT 960 system and 7H10 agar dilution to generate a cross-validated phenotypic DST readout. We compared phenotypic drug susceptibility results with predicted drug resistance profiles inferred by whole genome sequencing.Both phenotypic DST methods identically classified the strains into resistant/susceptible in 73-99% of the cases, depending on the drug. Changes in minimal inhibitory concentrations were readily explained by mutations identified by whole genome sequencing. Using the whole genome sequences we were able to predict quantitative drug resistance levels where wild type and mutant MIC distributions did not overlap. The utility of genome sequences to predict quantitative levels of drug resistance was partially limited due to incompletely understood mechanisms influencing the expression of phenotypic drug resistance. The overall sensitivity and specificity of whole genome-based DST were 86.8% and 94.5%, respectively.Despite some limitations, whole genome sequencing has high predictive power to infer resistance profiles without the need for time-consuming phenotypic methods.One sentence summaryWhole genome sequencing of clinical M. tuberculosis isolates accurately predicts drug resistance profiles and may replace culture-based drug susceptibility testing in the future.



2017 ◽  
Vol 55 (6) ◽  
pp. 1871-1882 ◽  
Author(s):  
Joseph Shea ◽  
Tanya A. Halse ◽  
Pascal Lapierre ◽  
Matthew Shudt ◽  
Donna Kohlerschmidt ◽  
...  

ABSTRACTWhole-genome sequencing (WGS) is a newer alternative for tuberculosis (TB) diagnostics and is capable of providing rapid drug resistance profiles while performing species identification and capturing the data necessary for genotyping. Our laboratory developed and validated a comprehensive and sensitive WGS assay to characterizeMycobacterium tuberculosisand otherM. tuberculosiscomplex (MTBC) strains, composed of a novel DNA extraction, optimized library preparation, paired-end WGS, and an in-house-developed bioinformatics pipeline. This new assay was assessed using 608 MTBC isolates, with 146 isolates during the validation portion of this study and 462 samples received prospectively. In February 2016, this assay was implemented to test all clinical cases of MTBC in New York State, including isolates and early positive Bactec mycobacterial growth indicator tube (MGIT) 960 cultures from primary specimens. Since the inception of the assay, we have assessed the accuracy of identification of MTBC strains to the species level, concordance with culture-based drug susceptibility testing (DST), and turnaround time. Species identification by WGS was determined to be 99% accurate. Concordance between drug resistance profiles generated by WGS and culture-based DST methods was 96% for eight drugs, with an average resistance-predictive value of 93% and susceptible-predictive value of 96%. This single comprehensive WGS assay has replaced seven molecular assays and has resulted in resistance profiles being reported to physicians an average of 9 days sooner than with culture-based DST for first-line drugs and 32 days sooner for second-line drugs.



2019 ◽  
Vol 8 (12) ◽  
Author(s):  
Sivakumar Shanmugam ◽  
Narender Kumar ◽  
Dina Nair ◽  
Mohan Natrajan ◽  
Srikanth Prasad Tripathy ◽  
...  

The genomes of 16 clinical Mycobacterium tuberculosis isolates were subjected to whole-genome sequencing to identify mutations related to resistance to one or more anti-Mycobacterium drugs. The sequence data will help in understanding the genomic characteristics of M. tuberculosis isolates and their resistance mutations prevalent in South India.



mSystems ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Yuan Wu ◽  
Chen Liu ◽  
Wen-Ge Li ◽  
Jun-Li Xu ◽  
Wen-Zhu Zhang ◽  
...  

ABSTRACTHorizontal gene transfer of mobile genetic elements (MGEs) accounts for the mosaic genome ofClostridium difficile, leading to acquisition of new phenotypes, including drug resistance and reconstruction of the genomes. MGEs were analyzed according to the whole-genome sequences of 37C. difficileisolates with a variety of sequence types (STs) within clade 4 from China. Great diversity was found in each transposon even within isolates with the same ST. Two novel transposons were identified in isolates ZR9 and ZR18, of which approximately one third to half of the genes showed heterogenous origins compared with the usual intestinal bacterial genes. Most importantly,catD, known to be harbored by Tn4453a/b, was replaced byaac(6′) aph(2′′)in isolates 2, 7, and 28. This phenomenon illustrated the frequent occurrence of gene exchanges betweenC. difficileand other enterobacteria with individual heterogeneity. Numerous prophages and CRISPR arrays were identified inC. difficileisolates of clade 4. Approximately 20% of spacers were located in prophage-carried CRISPR arrays, providing a new method for typing and tracing the origins of closely related isolates, as well as in-depth studies of the mechanism underlying genome remodeling. The rates of drug resistance were obviously higher than those reported previously around the world, although all isolates retained high sensitivity to vancomycin and metronidazole. The increasing number ofC. difficileisolates resistant to all antibiotics tested here suggests the ease with which resistance is acquiredin vivo. This study gives insights into the genetic mechanism of microevolution within clade 4.IMPORTANCEMobile genetic elements play a key role in the continuing evolution ofClostridium difficile, resulting in the emergence of new phenotypes for individual isolates. On the basis of whole-genome sequencing analysis, we comprehensively explored transposons, CRISPR, prophage, and genetic sites for drug resistance within clade 4C. difficileisolates with different sequence types. Great diversity in MGEs and a high rate of multidrug resistance were found within this clade, including new transposons, Tn4453a/bwithaac(6′) aph(2′′)instead ofcatD, and a relatively high rate of prophage-carried CRISPR arrays. These findings provide important new insights into the mechanism of genome remodeling within clade 4 and offer a new method for typing and tracing the origins of closely related isolates.



2021 ◽  
Vol 25 (9) ◽  
pp. 754-760
Author(s):  
P. Kamolwat ◽  
D. Nonghanphithak ◽  
A. Chaiprasert ◽  
S. Smithtikarn ◽  
P. Pungrassami ◽  
...  

BACKGROUND: Whole-genome sequencing (WGS) is a promising tool for the detection of drug-resistant TB (DR-TB). To date, there have been few comparisons of diagnostic performance of WGS and phenotypic drug susceptibility testing (DST) in DR-TB.METHODS: We compared drug resistance-conferring mutations identified by WGS analysis using TB-Profiler and Mykrobe with phenotypic DST profiles based on the Löwenstein-Jensen proportion method using drug-resistant Mycobacterium tuberculosis (n = 537) isolates from across Thailand. Based on available phenotypic DST results, diagnostic performance was analysed for resistance against isoniazid, rifampicin, ethambutol (EMB), streptomycin, ethionamide (ETH), kanamycin, capreomycin (CPM), para-aminosalicylic acid, ofloxacin and levofloxacin.RESULTS: High agreement between the two methods was observed for most drugs (>91%), except EMB (57%, 95% CI 53–61) and ETH (70%, 95% CI 66–74). Also, low specificity was observed for EMB (49%, 95% CI 44–54) and ETH (66%, 95% CI 61–71). Sensitivity was high for most drugs (range 83–98%), except CPM (77%, 95% CI 59–88).CONCLUSION: Low agreement between WGS and phenotypic tests for drug resistance was found for EMB and ETH. The current genomic database is insufficient for the identification of CPM resistance. Challenges remain for routine usage of WGS-based DST, especially for second-line anti-TB drugs.



2020 ◽  
Vol 9 (2) ◽  
pp. 465 ◽  
Author(s):  
Jalil Kardan-Yamchi ◽  
Hossein Kazemian ◽  
Simone Battaglia ◽  
Hamidreza Abtahi ◽  
Abbas Rahimi Foroushani ◽  
...  

Accurate and timely detection of drug resistance can minimize the risk of further resistance development and lead to effective treatment. The aim of this study was to determine the resistance to first/second-line anti-tuberculosis drugs in rifampicin/multidrug-resistant Mycobacterium tuberculosis (RR/MDR-MTB) isolates. Molecular epidemiology of strains was determined using whole genome sequencing (WGS)-based genotyping. A total of 35 RR/MDR-MTB isolates were subjected to drug susceptibility testing against first/second-line drugs using 7H9 Middlebrook in broth microdilution method. Illumina technology was used for paired-end WGS applying a Maxwell 16 Cell DNA Purification kit and the NextSeq platform. Data analysis and single nucleotide polymorphism calling were performed using MTBseq pipeline. The genome-based resistance to each drug among the resistant phenotypes was as follows: rifampicin (97.1%), isoniazid (96.6%), ethambutol (100%), levofloxacin (83.3%), moxifloxacin (83.3%), amikacin (100%), kanamycin (100%), capreomycin (100%), prothionamide (100%), D-cycloserine (11.1%), clofazimine (20%), bedaquiline (0.0%), and delamanid (44.4%). There was no linezolid-resistant phenotype, and a bedaquiline-resistant strain was wild type for related genes. The Beijing, Euro-American, and Delhi-CAS were the most populated lineage/sublineages. Drug resistance-associated mutations were mostly linked to minimum inhibitory concentration results. However, the role of well-known drug-resistant genes for D-cycloserine, clofazimine, bedaquiline, and delamanid was found to be more controversial.



mBio ◽  
2015 ◽  
Vol 6 (4) ◽  
Author(s):  
Nicole D. Pecora ◽  
Ning Li ◽  
Marc Allard ◽  
Cong Li ◽  
Esperanza Albano ◽  
...  

ABSTRACT Carbapenem-resistant Enterobacteriaceae (CRE) are an urgent public health concern. Rapid identification of the resistance genes, their mobilization capacity, and strains carrying them is essential to direct hospital resources to prevent spread and improve patient outcomes. Whole-genome sequencing allows refined tracking of both chromosomal traits and associated mobile genetic elements that harbor resistance genes. To enhance surveillance of CREs, clinical isolates with phenotypic resistance to carbapenem antibiotics underwent whole-genome sequencing. Analysis of 41 isolates of Klebsiella pneumoniae and Enterobacter cloacae, collected over a 3-year period, identified K. pneumoniae carbapenemase (KPC) genes encoding KPC-2, −3, and −4 and OXA-48 carbapenemases. All occurred within transposons, including multiple Tn4401 transposon isoforms, embedded within more than 10 distinct plasmids representing incompatibility (Inc) groups IncR, -N, -A/C, -H, and -X. Using short-read sequencing, draft maps were generated of new KPC-carrying vectors, several of which were derivatives of the IncN plasmid pBK31551. Two strains also had Tn4401 chromosomal insertions. Integrated analyses of plasmid profiles and chromosomal single-nucleotide polymorphism (SNP) profiles refined the strain patterns and provided a baseline hospital mobilome to facilitate analysis of new isolates. When incorporated with patient epidemiological data, the findings identified limited outbreaks against a broader 3-year period of sporadic external entry of many different strains and resistance vectors into the hospital. These findings highlight the utility of genomic analyses in internal and external surveillance efforts to stem the transmission of drug-resistant strains within and across health care institutions. IMPORTANCE We demonstrate how detection of resistance genes within mobile elements and resistance-carrying strains furthers active surveillance efforts for drug resistance. Whole-genome sequencing is increasingly available in hospital laboratories and provides a powerful and nuanced means to define the local landscape of drug resistance. In this study, isolates of Klebsiella pneumoniae and Enterobacter cloacae with resistance to carbapenem antibiotics were sequenced. Multiple carbapenemase genes were identified that resided in distinct transposons and plasmids. This mobilome, or population of mobile elements capable of mobilizing drug resistance, further highlighted the degree of strain heterogeneity while providing a detailed timeline of carbapenemase entry into the hospital over a 3-year period. These surveillance efforts support effective targeting of infection control resources and the development of institution-specific repositories of resistance genes and the mobile elements that carry them.



2020 ◽  
Author(s):  
Martina L. Reichmuth ◽  
Kathrin Zürcher ◽  
Marie Ballif ◽  
Chloé Loiseau ◽  
Sonia Borrell ◽  
...  

AbstractBackgroundDrug-resistant Mycobacterium tuberculosis (Mtb) strains threaten tuberculosis (TB) control. We compared data on drug resistance obtained at clinics in seven high TB burden countries during routine care with whole-genome sequencing (WGS) carried out centrally.MethodsWe collected pulmonary Mtb isolates and clinical data from adult TB patients in Africa, Latin America, and Asia, stratified by HIV status and drug resistance, from 2013 to 2016. Participating sites performed drug susceptibility testing (DST) locally, using routinely available methods. WGS was done using Illumina HiSeq 2500 at laboratories in the USA and Switzerland. We used TBprofiler to analyse the genomes. We used multivariable logistic regression adjusted for sex, age, HIV-status, history of TB, sputum positivity, and Mtb-lineage to analyse mortality.FindingsWe included 582 TB patients. The median age was 32 years (interquartile range: 27-43 years), 225 (39%) were female, and 247 (42%) were HIV-positive. Based on WGS, 339 (58%) isolates were pan-susceptible, 35 (6%) monoresistant, 146 (25%) multidrug-resistant, and 24 (4%) pre-/ extensively drug-resistant (pre-XDR/XDR-TB). The local DST results were discordant compared to WGS results in 130/582 (22%) of patients. All testing methods identified isoniazid and rifampicin resistance with relatively high agreement (kappa 0.69 for isoniazid and 0.88 rifampicin). Resistance to ethambutol, pyrazinamide, and second-line drugs was rarely tested locally. Of 576 patients with known treatment, 86 (15%) patients received inadequate treatment according to WGS results and the World Health Organization treatment guidelines. The analysis of mortality was based on 530 patients; 63 patients (12%) died and 77 patients (15%) received inadequate treatment. Mortality ranged from 6% in patients with pan-susceptible Mtb (18/310) to 39% in patients with pre-XDR/XDR-TB (9/23). The adjusted odds ratio for mortality was 4.82 (95% CI 2.43-9.44) for under-treatment and 0.52 (95% CI 0.03-2.73) for over-treatment.InterpretationIn seven high-burden TB countries, we observed discrepancies between drug resistance patterns from local DST and WGS, which resulted in inadequate treatment and higher mortality. WGS can provide accurate and detailed drug resistance information, which is required to improve the outcomes of drug-resistant TB in high burden settings. Our results support the WHO’s call for point-of-care tests based on WGS.



2021 ◽  
Author(s):  
Arturo Torres Ortiz ◽  
Jorge Coronel ◽  
Julia Rios Vidal ◽  
Cesar Bonilla ◽  
David Moore ◽  
...  

Abstract Recent advances in bacterial whole-genome sequencing have resulted in the identification of a comprehensive catalogue of genomic signatures of antibiotic resistance in Mycobacterium tuberculosis. With a view to pre-empting the emergence of drug-resistance, we hypothesized that pre-existing balanced polymorphisms in drug susceptible genotypes (“pre-resistance mutations”) could increase the risk of acquiring antimicrobial resistance in the future. In order to identify a pathogen genomic signature of future drug resistance we undertook whole-genome sequencing on 3135 culture positive isolates from different patients sampled over a 17-year period in Lima, Peru. Reconstructing ancestral whole genomes on time-calibrated phylogenetic trees we identified no single drug resistance in Peru predating 1940. Moving forward in evolutionary time through the phylogenetic tree from 1940, we apply a novel genome-wide survival analysis to determine the hazard of drug resistance acquisition at the level of lineage, mono-resistance state, and single-nucleotide polymorphism. We demonstrate that lineage 2 has a significantly higher incidence of drug resistance acquisition than lineage 4 (HR 3.36, 95% CI 2.10 - 5.38,p-value =4.25×10-7) and estimate that the hazard of evolving rifampicin following isoniazid resistance acquisition is 14 times that of genomes with a susceptible background (HR 14.45,95% CI 8.46 - 15.50, p-value<10−15). Our findings are validated in a separate publicly available dataset from Samara, Russia. After controlling for population structure, we also show that a deletion in a gene coding for the cell surface protein lppP predisposes to the acquisition of drug resistance in susceptible genotypes (HR 6.71, 95% CI4.82-11.22, p-value =1.17×10−9). Prediction of future drug resistance in susceptible pathogens together with targeted expanded therapy has the potential to prevent drug resistance emergence in Mycobacterium tuberculosis and other pathogens. Prospective cohort studies of participants with and with-out these polymorphisms should be undertaken with a view to implementing personalized pathogen genomic therapy. This approach could be employed to preempt and prevent the emergence of drug resistance and other important traits in other organisms.



2015 ◽  
Vol 53 (7) ◽  
pp. 2230-2237 ◽  
Author(s):  
Amanda C. Brown ◽  
Josephine M. Bryant ◽  
Katja Einer-Jensen ◽  
Jolyon Holdstock ◽  
Darren T. Houniet ◽  
...  

The rapid identification of antimicrobial resistance is essential for effective treatment of highly resistantMycobacterium tuberculosis. Whole-genome sequencing provides comprehensive data on resistance mutations and strain typing for monitoring transmission, but unlike for conventional molecular tests, this has previously been achievable only from cultures ofM. tuberculosis. Here we describe a method utilizing biotinylated RNA baits designed specifically forM. tuberculosisDNA to capture fullM. tuberculosisgenomes directly from infected sputum samples, allowing whole-genome sequencing without the requirement of culture. This was carried out on 24 smear-positive sputum samples, collected from the United Kingdom and Lithuania where a matched culture sample was available, and 2 samples that had failed to grow in culture.M. tuberculosissequencing data were obtained directly from all 24 smear-positive culture-positive sputa, of which 20 were of high quality (>20× depth and >90% of the genome covered). Results were compared with those of conventional molecular and culture-based methods, and high levels of concordance between phenotypical resistance and predicted resistance based on genotype were observed. High-quality sequence data were obtained from one smear-positive culture-negative case. This study demonstrated for the first time the successful and accurate sequencing ofM. tuberculosisgenomes directly from uncultured sputa. Identification of known resistance mutations within a week of sample receipt offers the prospect for personalized rather than empirical treatment of drug-resistant tuberculosis, including the use of antimicrobial-sparing regimens, leading to improved outcomes.



Sign in / Sign up

Export Citation Format

Share Document