scholarly journals Diphthamide modification on eukaryotic elongation factor 2 is needed to assure fidelity of mRNA translation and mouse development

2012 ◽  
Vol 109 (34) ◽  
pp. 13817-13822 ◽  
Author(s):  
S. Liu ◽  
C. Bachran ◽  
P. Gupta ◽  
S. Miller-Randolph ◽  
H. Wang ◽  
...  
2015 ◽  
Vol 43 (3) ◽  
pp. 328-332 ◽  
Author(s):  
Christopher G. Proud

Eukaryotic elongation factor 2 kinase (eEF2K) belongs to the small family of atypical protein kinases termed α-kinases, and is the only calcium/calmodulin (Ca/CaM)-dependent member of that group. It phosphorylates and inactivates eEF2, to slow down the rate of elongation, the stage in mRNA translation that consumes almost all the energy and amino acids consumed by protein synthesis. In addition to activation by Ca/CaM, eEF2K is also regulated by an array of other regulatory inputs, which include inhibition by the nutrient- and growth-factor activated signalling pathways. Recent evidence shows that eEF2K plays an important role in learning and memory, processes that require the synthesis of new proteins and involve Ca-mediated signalling. eEF2K is activated under conditions of nutrient and energy depletion. In cancer cells, or certain tumours, eEF2K exerts cytoprotective effects, which probably reflect its ability to inhibit protein synthesis, and nutrient consumption, under starvation conditions. eEF2K is being evaluated as a potential therapeutic target in cancer.


Author(s):  
Elham Taha ◽  
Kobi Rosenblum

In the brain, mRNA translation regulation plays a major role during different processes, including development, learning and memory, and synaptic plasticity. While the initiation phase of translation is considered to be the rate-limiting step, regulation of the elongation phase via the eukaryotic elongation factor 2 kinase (eEF2K) pathway is also pivotal for memory and synaptic plasticity consolidation. Understanding the molecular mechanisms underpinning memory and synaptic plasticity formation is invaluable for understanding basic mechanisms underlying cognitive function and the identification of effective targets for cognitive disorders. This chapter discusses the molecular function of the eEF2/eEF2K pathway in memory consolidation, synaptic plasticity, and neurological diseases. In addition, it describes possible new genetic tools that would be useful in determining the neuronal function of eEF2K in health and disease conditions.


2019 ◽  
Vol 74 (1) ◽  
pp. 88-100.e9 ◽  
Author(s):  
Leonie Mönkemeyer ◽  
Courtney L. Klaips ◽  
David Balchin ◽  
Roman Körner ◽  
F. Ulrich Hartl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document