scholarly journals Habenular kisspeptin modulates fear in the zebrafish

2014 ◽  
Vol 111 (10) ◽  
pp. 3841-3846 ◽  
Author(s):  
Satoshi Ogawa ◽  
Fatima M. Nathan ◽  
Ishwar S. Parhar

Kisspeptin, a neuropeptide encoded by the KISS1/Kiss1, and its cognate G protein-coupled receptor, GPR54 (kisspeptin receptor, Kiss-R), are critical for the control of reproduction in vertebrates. We have previously identified two kisspeptin genes (kiss1 and kiss2) in the zebrafish, of which kiss1 neurons are located in the habenula, which project to the median raphe. kiss2 neurons are located in the hypothalamic nucleus and send axonal projections to gonadotropin-releasing hormone neurons and regulate reproductive functions. However, the physiological significance of the Kiss1 expressed in the habenula remains unknown. Here we demonstrate the role of habenular Kiss1 in alarm substance (AS)-induced fear response in the zebrafish. We found that AS-evoked fear experience significantly reduces kiss1 and serotonin-related genes (plasmacytoma expressed transcript 1 and solute carrier family 6, member 4) in the zebrafish. Furthermore, Kiss1 administration suppressed the AS-evoked fear response. To further evaluate the role of Kiss1 in fear response, zebrafish Kiss1 peptide was conjugated to saporin (SAP) to selectively inactivate Kiss-R1-expressing neurons. The Kiss1-SAP injection significantly reduced Kiss1 immunoreactivity and c-fos mRNA in the habenula and the raphe compared with control. Furthermore, 3 d after Kiss1-SAP injection, the fish had a significantly reduced AS-evoked fear response. These findings provide an insight into the role of the habenular kisspeptin system in inhibiting fear.

2019 ◽  
Vol 30 (18) ◽  
pp. 2367-2376 ◽  
Author(s):  
Zahra Erami ◽  
Samantha Heitz ◽  
Anne R. Bresnick ◽  
Jonathan M. Backer

The invasion of tumor cells from the primary tumor is mediated by invadopodia, actin-rich protrusive organelles that secrete matrix metalloproteases and degrade the extracellular matrix. This coupling between protrusive activity and matrix degradation facilitates tumor invasion. We previously reported that the PI3Kβ isoform of PI 3-kinase, which is regulated by both receptor tyrosine kinases and G protein–coupled receptors, is required for invasion and gelatin degradation in breast cancer cells. We have now defined the mechanism by which PI3Kβ regulates invadopodia. We find that PI3Kβ is specifically activated downstream from integrins, and is required for integrin-stimulated spreading and haptotaxis as well as integrin-stimulated invadopodia formation. Surprisingly, these integrin-stimulated and PI3Kβ-dependent responses require the production of PI(3,4)P2 by the phosphoinositide 5′-phosphatase SHIP2. Thus, integrin activation of PI3Kβ is coupled to the SHIP2-dependent production of PI(3,4)P2, which regulates the recruitment of PH domain-containing scaffolds such as lamellipodin to invadopodia. These findings provide novel mechanistic insight into the role of PI3Kβ in the regulation of invadopodia in breast cancer cells.


2011 ◽  
Vol 6 (5) ◽  
pp. 853-860 ◽  
Author(s):  
Md. Shahjahan ◽  
Hironori Ando

AbstractThe decapeptide gonadotropin-releasing hormone (GnRH) is the primary factor responsible for the hypothalamic control of gonadotropin (GTH) secretion. This review focuses on a family of neuropeptides, LPXRFamide (LPXRFa) peptides, which have been implicated in the regulation of GTH secretion. LPXRFa acts on the pituitary via a G protein-coupled receptor, LPXRFa-R, to enhance gonadal development and maintenance by increasing gonadotropin release and synthesis. Because LPXRFa exists and functions in several fish species, LPXRFa is considered to be a key neurohormone in fish reproduction control. The precursors to LPXRFamide peptides encoded plural LPXRFamide peptides and were highly divergent in vertebrates, particularly in lower vertebrates. Tissue distribution analyses indicated that LPXRFamide peptides were highly concentrated in the hypothalamus and other brainstem regions. In view of the localization and expression of LPXRFamide peptides in the hypothalamo-hypophysial system, LPXRFamide peptide in fish increase GTH release in vitro and in vivo. This review summarizes the advances made in our understanding of the biosynthesis, mode of action and functional significance of LPXRFa, a newly discovered key neurohormone.


2020 ◽  
Vol 70 (3) ◽  
pp. 305-315
Author(s):  
Isaia Symeonidou ◽  
Styliani Pappa ◽  
Elias Papadopoulos ◽  
Chrysostomos I. Dovas ◽  
Andreas Kourelis ◽  
...  

AbstractIn enzootic areas the prevalence estimates of canine leishmaniosis are high whereas only a proportion of dogs exhibit the clinical disease, thus implying a role of host genetics. The type of the triggered immune response remains a crucial determining factor for the diverse outcome of this parasitosis. The Solute Carrier Family 11 member 1 (SLC11A1) is a protein, which plays a central role in macrophage function and is implicated in the regulation of the immune response. An extended study with 73 resistant and 75 susceptible to Leishmania dogs was conducted. A fragment of the promoter region of the canine SLC11A1 gene was amplified and digested providing the different genotypes for three previously recorded single-nucleotide polymorphisms (SNPs) (SNP1 T151C, SNP2 Α180G, SNP3 G318A) for each animal. Statistical analyses revealed that SNP2 Α180G in heterozygosity (AG) as well as SNP3 G318A in homozygosity (AA) are correlated with susceptibility to canine leishmaniosis.


2020 ◽  
Author(s):  
Daigo Imoto ◽  
Izumi Yamamoto ◽  
Hirokazu Matsunaga ◽  
Toya Yonekura ◽  
Ming-Liang Lee ◽  
...  

AbstractThe regulation of food intake is one of the major research areas in the study of metabolic syndromes such as obesity. Gene targeting studies have clarified the roles of hypothalamic neurons in feeding behaviour. However, our understanding of neural function under physiological conditions is still limited. Immediate early genes, such as activity-regulated cytoskeleton-associated protein (Arc/Arg3.1), are useful markers of neuronal activity. Here, we investigated the role of Arc/Arg3.1 gene-expressing neurons in the hypothalamus after refeeding using the targeted recombination in active populations method. We identified refeeding-responsive prodynorphin/cholecystokinin neurons in the dorsomedial hypothalamus that project to the paraventricular hypothalamic nucleus. Chemogenetic activation of these neurons decreased food intake and promoted positive valence. Our findings provide insight into the role of newly identified hedonic neurons in the process of feeding-induced satiety.


Channels ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 496-506
Author(s):  
Jiaheng Xie ◽  
Shujie Ruan ◽  
Zhechen Zhu ◽  
Ming Wang ◽  
Yuan Cao ◽  
...  

2020 ◽  
Author(s):  
Abdulsamed Kükürt ◽  
Mushap Kuru ◽  
Ömer Faruk Başer ◽  
Mahmut Karapehli̇̇van

Kisspeptin is a neuropeptide encoded by the kisspeptin gene (Kiss1) and located in different brain regions, primarily in the hypothalamus. Kisspeptin and its receptor G-protein-coupled receptor-54 (GPR54), are also found in behavioural brain regions such as the hippocampus and cortex. Kisspeptin, a very powerful neuropeptide that stimulates the secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary, does this by increasing gonadotropin-releasing hormone (GnRH) levels. In recent studies, it has been noted that kisspeptin is effective on reproductive functions. Globally 8 to 12% of couples have infertility problems, and the majority are residents of developing countries. Approximately 70% of infertility cases are caused by fertility problems in women. The frequency of infertility in women continues to increase every year and the underlying factors require further research. Bearing this problem in mind, this review examines the possible role of kisspeptin in female infertility. In doing so, it aims to find out how future application of kisspeptin may potentially unravel the neural reproductive disorder.


Sign in / Sign up

Export Citation Format

Share Document