scholarly journals Replication protein of tobacco mosaic virus cotranslationally binds the 5' untranslated region of genomic RNA to enable viral replication

2014 ◽  
Vol 111 (16) ◽  
pp. E1620-E1628 ◽  
Author(s):  
K. Kawamura-Nagaya ◽  
K. Ishibashi ◽  
Y.-P. Huang ◽  
S. Miyashita ◽  
M. Ishikawa
1999 ◽  
Vol 354 (1383) ◽  
pp. 583-586 ◽  
Author(s):  
H. Fraenkel-Conrat ◽  
B. Singer

This paper is a historical overview of the work done on the tobacco mosaic virus. The primary finding was that a virus is capable of reassembling itself from its component protein and RNA, and that only the RNA carries the genomic capability of the virus. This was followed by detailed studies of the chemical and biological properties of viral RNA.


2000 ◽  
Vol 74 (24) ◽  
pp. 11671-11680 ◽  
Author(s):  
T. A. M. Osman ◽  
C. L. Hemenway ◽  
K. W. Buck

ABSTRACT A template-dependent RNA polymerase has been used to determine the sequence elements in the 3′ untranslated region of tobacco mosaic virus RNA that are required for promotion of minus-strand RNA synthesis and binding to the RNA polymerase in vitro. Regions which were important for minus-strand synthesis were domain D1, which is equivalent to a tRNA acceptor arm; domain D2, which is similar to a tRNA anticodon arm; an upstream domain, D3; and a central core, C, which connects domains D1, D2, and D3 and determines their relative orientations. Mutational analysis of the 3′-terminal 4 nucleotides of domain D1 indicated the importance of the 3′-terminal CA sequence for minus-strand synthesis, with the sequence CCCA or GGCA giving the highest transcriptional efficiency. Several double-helical regions, but not their sequences, which are essential for forming pseudoknot and/or stem-loop structures in domains D1, D2, and D3 and the central core, C, were shown to be required for high template efficiency. Also important were a bulge sequence in the D2 stem-loop and, to a lesser extent, a loop sequence in a hairpin structure in domain D1. The sequence of the 3′ untranslated region upstream of domain D3 was not required for minus-strand synthesis. Template-RNA polymerase binding competition experiments showed that the highest-affinity RNA polymerase binding element region lay within a region comprising domain D2 and the central core, C, but domains D1 and D3 also bound to the RNA polymerase with lower affinity.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e54384 ◽  
Author(s):  
Shreyas S. Athavale ◽  
J. Jared Gossett ◽  
Jessica C. Bowman ◽  
Nicholas V. Hud ◽  
Loren Dean Williams ◽  
...  

FEBS Letters ◽  
1994 ◽  
Vol 354 (3) ◽  
pp. 271-273 ◽  
Author(s):  
Vladimir V. Zeyenko ◽  
Lyubov A. Ryabova ◽  
Daniel R. Gallie ◽  
Alexander S. Spirin

2002 ◽  
Vol 76 (11) ◽  
pp. 5678-5691 ◽  
Author(s):  
Vladimir V. Zeenko ◽  
Lyubov A. Ryabova ◽  
Alexander S. Spirin ◽  
Helen M. Rothnie ◽  
Daniel Hess ◽  
...  

ABSTRACT The genomic RNA of tobacco mosaic virus (TMV), like that of other positive-strand RNA viruses, acts as a template for both translation and replication. The highly structured 3′ untranslated region (UTR) of TMV RNAs plays an important role in both processes; it is not polyadenylated but ends with a tRNA-like structure (TLS) preceded by a conserved upstream pseudoknot domain (UPD). The TLS of tobamoviral RNAs can be specifically aminoacylated and, in this state, can interact with eukaryotic elongation factor 1A (eEF1A)/GTP with high affinity. Using a UV cross-linking assay, we detected another specific binding site for eEF1A/GTP, within the UPDs of TMV and crucifer-infecting tobamovirus (crTMV), that does not require aminoacylation. A mutational analysis revealed that UPD pseudoknot conformation and some conserved primary sequence elements are required for this interaction. Its possible role in the regulation of tobamovirus gene expression and replication is discussed.


2005 ◽  
Vol 86 (6) ◽  
pp. 1827-1833 ◽  
Author(s):  
R. Koenig ◽  
S. Barends ◽  
A. P. Gultyaev ◽  
D.-E. Lesemann ◽  
H. J. Vetten ◽  
...  

The complete nucleotide sequence of the genomic RNA of the new virus Nemesia ring necrosis virus (NeRNV), which is widespread in various ornamental plant species belonging to the Scrophulariaceae and Verbenaceae, has been determined. Based on its gene content, the folding properties of its 5′-untranslated region and in vitro translation experiments, NeRNV RNA is a typical tymovirus RNA. Its 3′ end, however, differs greatly from those of the valine-specific tymoviral RNAs that have been analysed previously. It can be folded into an upstream pseudoknot domain and a histidine-specific tRNA-like structure, a combination that, so far, has been found only in tobamoviral RNAs. The identity elements found in NeRNV RNA for recognition by yeast histidyl-tRNA synthetase are more similar to those of yeast tRNAHis than the ones found in tobacco mosaic virus RNA. As a result NeRNV RNA can be charged with histidine even more efficiently than tobacco mosaic virus RNA.


2019 ◽  
Vol 25 ◽  
pp. 190-196 ◽  
Author(s):  
O. I. Varchenko ◽  
B. M. Krasyuk ◽  
A. A. Fedchunov ◽  
O. V. Zimina ◽  
M. F. Parii ◽  
...  

Aim. Creation of genetic constructions to study the effects of various regulatory elements, namely promoters, on the expression of GFP reporter protein. Methods. For creation genetic constructs, the method of molecular cloning Golden Gate was used, which allows the rapid creation of genetic vectors using IIS type restriction enzymes and T4 DNA liga-ses. Results. For research six different promoters were selected, namely the 35S CaMV (Cauliflower Mosaic Virus), double 35S CaMV promoter, promoters of the RbcS2B and RbcS1B genes encoding a small subunit of ribulozobisphosphate carboxylase (RuBisCo) isolated from Arabidopsis thaliana (L.) Heynh.; promoters of genes encoding chlorophyll a-b binding proteins (LHB1B1 and LHB1B2) also isolated from A. thaliana (L.) Heynh. All transcription units additionally contained the following elements: the 5'-untranslated region Ω sequence (5’UTR Ω) from the tobacco mosaic virus TMV (Tobacco Mosaic Virus); the coding sequence of the gene gfp (Green Fluorescent Protein) isolated from A. victoria and the 35S Terminator CaMV with the polyadenylation signal and the 3'-untranslated region sequence. As a result, six genetic constructs with different regulatory elements, namely promoters, have been created. Conclusions. To study the effects of various regulatory elements, namely promoters, on the expression of a GFP repor-ter protein in transient or stable genetic transformation of plants the created genetic constructs can be used.Keywords: cloning, genetic constructs, promoters, Green Fluorescent Protein (GFP).


Virology ◽  
2011 ◽  
Vol 414 (2) ◽  
pp. 110-118 ◽  
Author(s):  
Sabrina R. Kramer ◽  
Sameer P. Goregaoker ◽  
James N. Culver

Uirusu ◽  
2014 ◽  
Vol 64 (1) ◽  
pp. 3-10
Author(s):  
Kazuhiro ISHIBASHI ◽  
Masayuki ISHIKAWA

Sign in / Sign up

Export Citation Format

Share Document