scholarly journals Enhancing the antitumor efficacy of a cell-surface death ligand by covalent membrane display

2015 ◽  
Vol 112 (18) ◽  
pp. 5679-5684 ◽  
Author(s):  
Pradeep M. Nair ◽  
Heather Flores ◽  
Alvin Gogineni ◽  
Scot Marsters ◽  
David A. Lawrence ◽  
...  

TNF superfamily death ligands are expressed on the surface of immune cells and can trigger apoptosis in susceptible cancer cells by engaging cognate death receptors. A recombinant soluble protein comprising the ectodomain of Apo2 ligand/TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) has shown remarkable preclinical anticancer activity but lacked broad efficacy in patients, possibly owing to insufficient exposure or potency. We observed that antibody cross-linking substantially enhanced cytotoxicity of soluble Apo2L/TRAIL against diverse cancer cell lines. Presentation of the ligand on glass-supported lipid bilayers enhanced its ability to drive receptor microclustering and apoptotic signaling. Furthermore, covalent surface attachment of Apo2L/TRAIL onto liposomes—synthetic lipid-bilayer nanospheres—similarly augmented activity. In vivo, liposome-displayed Apo2L/TRAIL achieved markedly better exposure and antitumor activity. Thus, covalent synthetic-membrane attachment of a cell-surface ligand enhances efficacy, increasing therapeutic potential. These findings have translational implications for liposomal approaches as well as for Apo2L/TRAIL and other clinically relevant TNF ligands.

2002 ◽  
Vol 1 (5) ◽  
pp. 319-327 ◽  
Author(s):  
M. P. Rols ◽  
M. Golzio ◽  
B. Gabriel ◽  
J. Teissié

Electric field pulses are a new approach for drug and gene delivery for cancer therapy. They induce a localized structural alteration of cell membranes. The associated physical mechanisms are well explained and can be safely controlled. A position dependent modulation of the membrane potential difference is induced when an electric field is applied to a cell. Electric field pulses with an overcritical intensity evoke a local membrane alteration. A free exchange of hydrophilic low molecular weight molecules takes place across the membrane. A leakage of cytosolic metabolites and a loading of polar drugs into the cytoplasm are obtained. The fraction of the cell surface which is competent for exchange is a function of the field intensity. The level of local exchange is strongly controlled by the pulse duration and the number of successive pulses. The permeabilised state is long lived. Its lifetime is under the control of the cumulated pulse duration. Cell viability can be preserved. Gene transfer is obtained but its mechanism is not a free diffusion. Plasmids are electrophoretically accumulated against the permeabilised cell surface and form aggregates due to the field effect. After the pulses, several steps follow: translocation to the cytoplasm, traffic to the nucleus and expression. Molecular structural and metabolic changes in cells remain mostly poorly understood. Nevertheless, while most studies were established on cells in culture ( in vitro), recent experiments show that similar effects are obtained on tissue ( in vivo). Transfer remains controlled by the physical parameters of the electrical treatment.


2019 ◽  
Author(s):  
Eleanor M Denham ◽  
Michael I Barton ◽  
Susannah M Black ◽  
Marcus J Bridge ◽  
Ben de Wet ◽  
...  

AbstractDose-response experiments are a mainstay of receptor biology studies and can reveal valuable insights into receptor function. Such studies of receptors that bind cell surface ligands are currently limited by the difficulty in manipulating the surface density of ligands at a cell-cell interface. Here we describe a generic cell surface ligand system that allows precise manipulation of cell surface ligand densities over several orders of magnitude. We validate the system for a range of immunoreceptors, including the T cell receptor (TCR), and show that this generic ligand stimulates via the TCR at a similar surface density as its native ligand. This system allows the effect of surface density, valency, dimensions, and affinity of the ligand to be manipulated. It can be readily extended to other receptor-cell surface ligand interactions, and will facilitate investigation into the activation of, and signal integration between, cell surface receptors.


2006 ◽  
Vol 50 (4) ◽  
pp. 315-325 ◽  
Author(s):  
Mami Kishimoto ◽  
Atsutoshi Yoshimura ◽  
Mariko Naito ◽  
Kuniaki Okamoto ◽  
Kenji Yamamoto ◽  
...  
Keyword(s):  
A Cell ◽  

2015 ◽  
Vol 1 (4) ◽  
pp. 181-190 ◽  
Author(s):  
Chelcie H. Eller ◽  
Tzu-Yuan Chao ◽  
Kiran K. Singarapu ◽  
Ouathek Ouerfelli ◽  
Guangbin Yang ◽  
...  

1984 ◽  
Vol 160 (1) ◽  
pp. 341-346 ◽  
Author(s):  
E S Vitetta ◽  
R J Fulton ◽  
J W Uhr

In vitro killing of the human Daudi cell line by either univalent [F(ab')] or divalent (IgG) forms of rabbit anti-human Ig (RAHIg) coupled to ricin A chain can be specifically potentiated by a "piggyback" treatment with ricin B chain coupled to goat anti-rabbit Ig (GARIg). When cells are treated with univalent immunotoxin (IT) [F(ab') RAHIg-A] and then cultured, IT can be detected on the cell surface for at least 5 h, since GARIg-B can still enhance killing at this time. These results provide a strategy for in vivo use of A chain- and B chain-containing IT.


2008 ◽  
Vol 295 (1) ◽  
pp. G16-G26 ◽  
Author(s):  
Mubeen Jafri ◽  
Bryan Donnelly ◽  
Steven Allen ◽  
Alex Bondoc ◽  
Monica McNeal ◽  
...  

Inoculation of BALB/c mice with rhesus rotavirus (RRV) in the newborn period results in biliary epithelial cell (cholangiocyte) infection and the murine model of biliary atresia. Rotavirus infection of a cell requires attachment, which is governed in part by cell-surface expression of integrins such as α2β1. We hypothesized that cholangiocytes were susceptible to RRV infection because they express α2β1. RRV attachment and replication was measured in cell lines derived from cholangiocytes and hepatocytes. Flow cytometry was performed on these cell lines to determine whether α2β1 was present. Cholangiocytes were blocked with natural ligands, a monoclonal antibody, or small interfering RNA against the α2-subunit and were infected with RRV. The extrahepatic biliary tract of newborn mice was screened for the expression of the α2β1-integrin. Newborn mice were pretreated with a monoclonal antibody against the α2-subunit and were inoculated with RRV. RRV attached and replicated significantly better in cholangiocytes than in hepatocytes. Cholangiocytes, but not hepatocytes, expressed α2β1 in vitro and in vivo. Blocking assays led to a significant reduction in attachment and yield of virus in RRV-infected cholangiocytes. Pretreatment of newborn pups with an anti-α2 monoclonal antibody reduced the ability of RRV to cause biliary atresia in mice. Cell-surface expression of the α2β1-integrin plays a role in the mechanism that confers cholangiocyte susceptibility to RRV infection.


2010 ◽  
Vol 21 (24) ◽  
pp. 4325-4337 ◽  
Author(s):  
Amy B. Emerman ◽  
Zai-Rong Zhang ◽  
Oishee Chakrabarti ◽  
Ramanujan S. Hegde

Proteins are often made in more than one form, with alternate versions sometimes residing in different cellular compartments than the primary species. The mammalian prion protein (PrP), a cell surface GPI-anchored protein, is a particularly noteworthy example for which minor cytosolic and transmembrane forms have been implicated in disease pathogenesis. To study these minor species, we used a selective labeling strategy in which spatially restricted expression of a biotinylating enzyme was combined with asymmetric engineering of the cognate acceptor sequence into PrP. Using this method, we could show that even wild-type PrP generates small amounts of the CtmPrP transmembrane form. Selective detection of CtmPrP allowed us to reveal its N-terminal processing, long half-life, residence in both intracellular and cell surface locations, and eventual degradation in the lysosome. Surprisingly, some human disease-causing mutants in PrP selectively stabilized CtmPrP, revealing a previously unanticipated mechanism of CtmPrP up-regulation that may contribute to disease. Thus, spatiotemporal tagging has uncovered novel aspects of normal and mutant PrP metabolism and should be readily applicable to the analysis of minor topologic isoforms of other proteins.


2020 ◽  
Author(s):  
Long Li ◽  
Mohammad Arif Kamal ◽  
Henning Stumpf ◽  
Franck Thibaudau ◽  
Kheya Sengupta ◽  
...  

Adhesion domains forming at the membrane interfaces between two cells or a cell and the ex-tracellular matrix commonly involve multiple proteins bridges. However, the physical mechanisms governing the domain structures are not yet fully resolved. Here we present a joint experimental and theoretical study of a mimetic model-system, based on giant unilammelar vesicles interacting with supported lipid bilayers, with which the underlying physical effects can be clearly identified. In our case, adhesion is induced by simultaneous action of DNA linkers with two different lengths. We study the organization of bridges into domains as a function of relative fraction of long and short DNA constructs. Irrespective of the composition, we systematically find adhesion domains with coexisting DNA bridge types, despite their relative differences in length of 9 nm. However, at short length scales, below the optical resolution of the microscope, simulations suggest the formation of nanodomains by the minority fraction. The nano-aggregation is more significant for long bridges, which are also more stable, even though the enthalpy of membrane insertion is the same for both species.


Immunity ◽  
2000 ◽  
Vol 12 (2) ◽  
pp. 223-232 ◽  
Author(s):  
Jim Apostolopoulos ◽  
Ian F.C McKenzie ◽  
Mauro S Sandrin
Keyword(s):  
A Cell ◽  

Sign in / Sign up

Export Citation Format

Share Document