scholarly journals Rate, spectrum, and evolutionary dynamics of spontaneous epimutations

2015 ◽  
Vol 112 (21) ◽  
pp. 6676-6681 ◽  
Author(s):  
Adriaan van der Graaf ◽  
René Wardenaar ◽  
Drexel A. Neumann ◽  
Aaron Taudt ◽  
Ruth G. Shaw ◽  
...  

Stochastic changes in cytosine methylation are a source of heritable epigenetic and phenotypic diversity in plants. Using the model plant Arabidopsis thaliana, we derive robust estimates of the rate at which methylation is spontaneously gained (forward epimutation) or lost (backward epimutation) at individual cytosines and construct a comprehensive picture of the epimutation landscape in this species. We demonstrate that the dynamic interplay between forward and backward epimutations is modulated by genomic context and show that subtle contextual differences have profoundly shaped patterns of methylation diversity in A. thaliana natural populations over evolutionary timescales. Theoretical arguments indicate that the epimutation rates reported here are high enough to rapidly uncouple genetic from epigenetic variation, but low enough for new epialleles to sustain long-term selection responses. Our results provide new insights into methylome evolution and its population-level consequences.

2018 ◽  
Author(s):  
Maria Paniw

AbstractWith a growing number of long-term, individual-based data on natural populations available, it has become increasingly evident that environmental change affects populations through complex, simultaneously occurring demographic and evolutionary processes. Analyses of population-level responses to environmental change must therefore integrate demography and evolution into one coherent framework. Integral projection models (IPMs), which can relate genetic and phenotypic traits to demographic and population-level processes, offer a powerful approach for such integration. However, a rather artificial divide exists in how plant and animal population ecologists use IPMs. Here, I argue for the integration of the two sub-disciplines, particularly focusing on how plant ecologists can diversify their toolset to investigate selection pressures and eco-evolutionary dynamics in plant population models. I provide an overview of approaches that have applied IPMs for eco-evolutionary studies and discuss a potential future research agenda for plant population ecologists. Given an impending extinction crisis, a holistic look at the interacting processes mediating population persistence under environmental change is urgently needed.


Author(s):  
Zachariah Gompert ◽  
Lauren Lucas

Long term studies of wild populations indicate that natural selection can cause rapid and dramatic changes in traits, with spatial and temporal variation in the strength of selection a critical driver of genetic variation in natural populations. In 2012, we began a long term study of genome-wide molecular evolution in populations of the butterfly Lycaeides ideas in the Greater Yellowstone Area (GYA). We aimed to quantify the role of environment-dependent selection on evolution in these populations. Building on previous work, in 2017 we collected new samples, incorporated distance sampling, and surveyed the insect community at each site. We also defined the habitat boundary at anew, eleventh site. Our preliminary analyses suggest that both genetic drift and selection are important drivers in this system.   Featured photo from Figure 1 in report.


2021 ◽  
Vol 118 (15) ◽  
pp. e2020424118
Author(s):  
Edward D. Lee ◽  
Christopher P. Kempes ◽  
Geoffrey B. West

Population-level scaling in ecological systems arises from individual growth and death with competitive constraints. We build on a minimal dynamical model of metabolic growth where the tension between individual growth and mortality determines population size distribution. We then separately include resource competition based on shared capture area. By varying rates of growth, death, and competitive attrition, we connect regular and random spatial patterns across sessile organisms from forests to ants, termites, and fairy circles. Then, we consider transient temporal dynamics in the context of asymmetric competition, such as canopy shading or large colony dominance, whose effects primarily weaken the smaller of two competitors. When such competition couples slow timescales of growth to fast competitive death, it generates population shocks and demographic oscillations similar to those observed in forest data. Our minimal quantitative theory unifies spatiotemporal patterns across sessile organisms through local competition mediated by the laws of metabolic growth, which in turn, are the result of long-term evolutionary dynamics.


2017 ◽  
Author(s):  
WR Shoemaker ◽  
JT Lennon

ABSTRACTDormancy is a bet-hedging strategy that allows organisms to persist through conditions that are sub-optimal for growth and reproduction by entering a reversible state of reduced metabolic activity. Dormancy allows a population to maintain a reservoir of genetic and phenotypic diversity (i.e., a seed bank) that can contribute to the long-term survival of a population. This strategy can be potentially adaptive and has long been of interest to ecologists and evolutionary biologists. However, comparatively little is known about how dormancy influences the fundamental evolutionary forces of genetic drift, mutation, selection, recombination, and gene flow. Here, we investigate how seed banks affect the processes underpinning evolution by reviewing existing theory, implementing novel simulations, and determining how and when dormancy can influence evolution as a population genetic process. We extend our analysis to examine how seed banks can alter macroevolutionary processes, including rates of speciation and extinction. Through the lens of population genetic theory, we can understand the extent that seed banks influence microbial evolutionary dynamics.


2017 ◽  
Author(s):  
Yanjun Zan ◽  
Zheya Sheng ◽  
Lars Rönnegård ◽  
Christa F. Honaker ◽  
Paul B. Siegel ◽  
...  

AbstractThe ability of a population to adapt to changes in their living conditions, whether in nature or captivity, often depends on polymorphisms in multiple genes across the genome. In-depth studies of such polygenic adaptations are difficult in natural populations, but can be approached using the resources provided by artificial selection experiments. Here, we dissect the genetic mechanisms involved in long-term selection responses of the Virginia chicken lines, populations that after 40 generations of divergent selection for 56-day body weight display a nine-fold difference in the selected trait. In the F15 generation of an intercross between the divergent lines, 20 loci explained more than 60% of the additive genetic variance for the selected trait. We focused particularly on seven major QTL and found that only two fine-mapped to single, bi-allelic loci; the other five contained linked loci, multiple alleles or were epistatic. This detailed dissection of the polygenic adaptations in the Virginia lines provides a deeper understanding of genome-wide mechanisms involved in the long-term selection responses. The results illustrate that long-term selection responses, even from populations with a limited genetic diversity, can be polygenic and influenced by a range of genetic mechanisms.


2016 ◽  
Author(s):  
Jia-Xing Yue ◽  
Jing Li ◽  
Louise Aigrain ◽  
Johan Hallin ◽  
Karl Persson ◽  
...  

AbstractStructural rearrangements have long been recognized as an important source of genetic variation with implications in phenotypic diversity and disease, yet their evolutionary dynamics are difficult to characterize with short-read sequencing. Here, we report long-read sequencing for 12 strains representing major subpopulations of the partially domesticated yeastSaccharomyces cerevisiaeand its wild relativeSaccharomyces paradoxus. Complete genome assemblies and annotations generate population-level reference genomes and allow for the first explicit definition of chromosome partitioning into cores, subtelomeres and chromosome-ends. High-resolution view of structural dynamics uncovers that, in chromosomal cores,S. paradoxusexhibits higher accumulation rate of balanced structural rearrangements (inversions, translocations and transpositions) whereasS. cerevisiaeaccumulates unbalanced rearrangements (large insertions, deletions and duplications) more rapidly. In subtelomeres, recurrent interchromosomal reshuffling was found in both species, with higher rate inS. cerevisiae. Such striking contrasts between wild and domesticated yeasts reveal the influence of human activities on structural genome evolution.


Author(s):  
Andrew P. Hendry

This chapter outlines how to conceptualize and predict adaptive evolution based on information about selection and genetic variation. It introduces and explains adaptive landscapes, a concept that has proven useful in guiding the understanding of evolution. The chapter also reviews empirical data to answer fundamental questions about adaptation in nature, including to what extent short- and long-term evolution is predictable, how fast is phenotypic change, to what extent is adaptation constrained by genetic variation, and how well adapted natural populations are to their local environments. Moving beyond selection and adaptation within populations, the chapter shows how eco-evolutionary dynamics will be shaped by biological diversity: that is, different populations and species have different effects on their environment.


2017 ◽  
Vol 49 (6) ◽  
pp. 913-924 ◽  
Author(s):  
Jia-Xing Yue ◽  
Jing Li ◽  
Louise Aigrain ◽  
Johan Hallin ◽  
Karl Persson ◽  
...  

Abstract Structural rearrangements have long been recognized as an important source of genetic variation, with implications in phenotypic diversity and disease, yet their detailed evolutionary dynamics remain elusive. Here we use long-read sequencing to generate end-to-end genome assemblies for 12 strains representing major subpopulations of the partially domesticated yeast Saccharomyces cerevisiae and its wild relative Saccharomyces paradoxus. These population-level high-quality genomes with comprehensive annotation enable precise definition of chromosomal boundaries between cores and subtelomeres and a high-resolution view of evolutionary genome dynamics. In chromosomal cores, S. paradoxus shows faster accumulation of balanced rearrangements (inversions, reciprocal translocations and transpositions), whereas S. cerevisiae accumulates unbalanced rearrangements (novel insertions, deletions and duplications) more rapidly. In subtelomeres, both species show extensive interchromosomal reshuffling, with a higher tempo in S. cerevisiae. Such striking contrasts between wild and domesticated yeasts are likely to reflect the influence of human activities on structural genome evolution.


2014 ◽  
Author(s):  
Oana Carja ◽  
Uri Liberman ◽  
Marcus W. Feldman

The production and maintenance of genetic and phenotypic diversity under temporally fluctuating selection and the signatures of environmental and selective volatility in the patterns of genetic and phenotypic variation have been important areas of focus in population genetics. On one hand, stretches of constant selection pull the genetic makeup of populations towards local fitness optima. On the other, in order to cope with changes in the selection regime, populations may evolve mechanisms that create a diversity of genotypes. By tuning the rates at which variability is produced, such as the rates of recombination, mutation or migration, populations may increase their long-term adaptability. Here we use theoretical models to gain insight into how the rates of these three evolutionary forces are shaped by fluctuating selection. We compare and contrast the evolution of recombination, mutation and migration under similar patterns of environmental change and show that these three sources of phenotypic variation are surprisingly similar in their response to changing selection. We show that knowing the shape, size, variance and asymmetry of environmental runs is essential for accurate prediction of genetic evolutionary dynamics.


2019 ◽  
Author(s):  
Hugo Cayuela ◽  
Staffan Jacob ◽  
Nicolas Schtickzelle ◽  
Rik Verdonck ◽  
Hervé Philippe ◽  
...  

AbstractPhenotypic plasticity, the ability of one genotype to produce different phenotypes in different environments, plays a central role in species’ response to environmental changes. Transgenerational plasticity (TGP) allows the transmission of this environmentally-induced phenotypic variation across generations, and can influence adaptation. To date, the genetic control of TGP, its long-term stability, and its potential costs remain largely unknown, mostly because empirical demonstrations of TGP across many generations in several genetic backgrounds are scarce. Here, we examined how genotype determines the TGP of dispersal, a fundamental process in ecology and evolution. We used an experimental approach involving ~200 clonal generations in a model-species of ciliate to determine if and how TGP influences the expression of dispersal-related traits in several genotypes. Our results show that morphological and movement traits associated with dispersal are plastic, and that these modifications are inherited over at least 35 generations. We also highlight that genotype modulates the fitness costs and benefits associated with plastic dispersal strategies. Our study suggests that genotype-dependent TGP could play a critical role in eco-evolutionary dynamics as dispersal determines gene flow and the long-term persistence of natural populations. More generally, it outlines the tremendous importance that genotype-dependent TGP could have in the ability of organisms to cope with current and future environmental changes.SignificanceThe genetic control of the transgenerational plasticity is still poorly understood despite its critical role in species responses to environmental changes. We examined how genotype determines transgenerational plasticity of a complex trait (i.e., dispersal) in a model-species of ciliate across ~200 clonal generations. Our results provide evidence that plastic phenotypic variation linked to dispersal is stably inherited over tens of generations and that cell genotype modulates the expression and fitness cost of transgenerational plasticity.


Sign in / Sign up

Export Citation Format

Share Document