scholarly journals Synthesis of refractory organic matter in the ionized gas phase of the solar nebula

2015 ◽  
Vol 112 (23) ◽  
pp. 7129-7134 ◽  
Author(s):  
Maïa Kuga ◽  
Bernard Marty ◽  
Yves Marrocchi ◽  
Laurent Tissandier

In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)−CO−N2−noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system.

Author(s):  
Mario Trieloff

Although the second most abundant element in the cosmos is helium, noble gases are also called rare gases. The reason is that they are not abundant on terrestrial planets like the Earth, which is characterized by orders of magnitude depletion of—particularly light—noble gases when compared to the cosmic element abundance pattern. Indeed, geochemical depletion and enrichment processes mean that noble gases are highly versatile tracers of planetary formation and evolution. When our solar system formed—or even before—small grains and first condensates incorporated small amounts of noble gases from the surrounding gas of solar composition, resulting in depletion of light He and Ne relative to heavy Ar, Kr, and Xe, leading to the “planetary type” abundance pattern. Further noble gas depletion occurred during flash heating of mm- to cm-sized objects (chondrules and calcium, aluminum-rich inclusions), and subsequently during heating—and occasionally differentiation—on small planetesimals, which were precursors of planets. Some of these objects are present today in the asteroid belt and are the source of many meteorites. Many primitive meteorites contain very small (micron to sub-micron size) rare grains that are older than our Solar System and condensed billions of years ago in in the atmospheres of different stars, for example, Red Giant stars. These grains are characterized by nucleosynthetic anomalies, in particular the noble gases, such as so-called s-process xenon. While planetesimals acquired a depleted noble gas component strongly fractionated in favor of heavy noble gases, the Sun and also gas giants like Jupiter attracted a much larger amount of gas from the protosolar nebula by gravitational capture. This resulted in a cosmic or “solar type” abundance pattern, containing the full complement of light noble gases. In contrast, terrestrial planets accreted from planetesimals with only minor contributions from the gaseous component of the protosolar nebula, which accounts for their high degree of depletion and essentially “planetary” elemental abundance pattern. The strong depletion in noble gases facilitates their application as noble gas geo- and cosmochronometers; chronological applications are based on being able to determine noble gas isotopes formed by radioactive decay processes, for example, 40Ar by 40K decay, 129Xe by 129I decay, or fission Xe from 238U or 244Pu decay. Particularly ingrowth of radiogenic xenon is only possible due to the depletion of primordial nuclides, which allows insight into the chronology of fractionation of lithophile parent nuclides and atmophile noble gas daughters. Applied to large-scale planetary reservoirs, this helps to elucidate the timing of mantle degassing and evolution of planetary atmospheres. Applied to individual rocks and minerals, it allows radioisotope chronology using short-lived (e.g., 129I–129Xe) or long-lived (e.g., 40K–40Ar) systems. The dominance of 40Ar in the terrestrial atmosphere allowed von Weizsäcker to conclude that most of the terrestrial atmosphere originated by degassing of the solid Earth, which is an ongoing process today at mid-ocean ridges, as indicated by outgassing of primordial helium from newly forming ocean crust. Mantle degassing was much more massive in the past, with most of the terrestrial atmosphere probably formed during the first few 100 million years of Earth’s history, in response to major evolutionary processes of accretion, terrestrial core formation, and the terminal accretion stage of a giant impact that formed our Moon. During accretion, solar noble gases were added to the mantle, presumably by solar wind irradiation of the small planetesimals and dust accreting to form the Earth. While the Moon-forming impact likely dissipated a major fraction of the primordial atmosphere, today’s atmosphere originated by addition of a late veneer of asteroidal and possibly cometary material combined with a decreasing rate of mantle degassing over time. As other atmophile elements behave similarly to noble gases, they also trace the origin of major volatiles on Earth, for example, water, nitrogen, and carbon.


Author(s):  
Mario Trieloff

This is an advance summary of a forthcoming article in the Oxford Encyclopedia of Planetary Science. Please check back later for the full article.Although the second most abundant element in the cosmos is helium, noble gases are also called rare gases. The reason is that they are not abundant on terrestrial planets like our Earth, which is characterized by orders of magnitude depletion of—particularly light—noble gases when compared to the cosmic element abundance pattern. Indeed, such geochemical depletion and enrichment processes make noble gases so versatile concerning planetary formation and evolution: When our solar system formed, the first small grains started to adsorb small amounts of noble gases from the protosolar nebula, resulting in depletion of light He and Ne when compared to heavy noble gases Ar, Kr, and Xe: the so-called planetary type abundance pattern. Subsequent flash heating of the first small mm to cm-sized objects (chondrules and calcium, aluminum rich inclusions) resulted in further depletion, as well as heating—and occasionally differentiation—on small planetesimals, which were precursors of larger planets and which we still find in the asteroid belt today from where we get rocky fragments in form of meteorites. In most primitive meteorites, we even can find tiny rare grains that are older than our solar system and condensed billions of years ago in circumstellar atmospheres of, for example, red giant stars. These grains are characterized by nucleosynthetic anomalies and particularly identified by noble gases, for example, so-called s-process xenon.While planetesimals acquired a depleted noble gas component strongly fractionated in favor of heavy noble gases, the sun and also gas giants like Jupiter attracted a much larger amount of gas from the protosolar nebula by gravitational capture. This resulted in a cosmic or “solar type” abundance pattern, containing the full complement of light noble gases. Contrary to Jupiter or the sun, terrestrial planets accreted from planetesimals with only minor contributions from the protosolar nebula, which explains their high degree of depletion and basically “planetary” elemental abundance pattern. Indeed this depletion enables another tool to be applied in noble gas geo- and cosmochemistry: ingrowth of radiogenic nuclides. Due to heavy depletion of primordial nuclides like 36Ar and 130Xe, radiogenic ingrowth of 40Ar by 40K decay, 129Xe by 129I decay, or fission Xe from 238U or 244Pu decay are precisely measurable, and allow insight in the chronology of fractionation of lithophile parent nuclides and atmophile noble gas daughters, mainly caused by mantle degassing and formation of the atmosphere.Already the dominance of 40Ar in the terrestrial atmosphere allowed C. F v. Weizsäcker to conclude that most of the terrestrial atmosphere originated by degassing of the solid Earth, which is an ongoing process today at mid ocean ridges, where primordial helium leaves the lithosphere for the first time. Mantle degassing was much more massive in the past; in fact, most of the terrestrial atmosphere formed during the first 100 million years of Earth´s history, and was completed at about the same time when the terrestrial core formed and accretion was terminated by a giant impact that also formed our moon. However, before that time, somehow also tiny amounts of solar noble gases managed to find their way into the mantle, presumably by solar wind irradiation of small planetesimals or dust accreting to Earth. While the moon-forming impact likely dissipated the primordial atmosphere, today´s atmosphere originated by mantle degassing and a late veneer with asteroidal and possibly cometary contributions. As other atmophile elements behave similar to noble gases, they also trace the origin of major volatiles on Earth, for example, water, nitrogen, sulfur, and carbon.


2004 ◽  
Vol 213 ◽  
pp. 275-280 ◽  
Author(s):  
G. J. Flynn ◽  
L. P. Keller ◽  
C. Jacobsen ◽  
S. Wirick

Interplanetary dust particles (IDPs), ∼ 10μm particles from comets and asteroids, have been collected by NASA from the Earth's stratosphere. We compared carbon X-ray Absorption Near-Edge Structure (XANES) and Fourier Transform Infra-Red (FTIR) spectra of anhydrous and hydrated interplanetary dust particles and found that anhydrous and hydrated IDPs have similar types and abundances of organic carbon. This is different from results on meteorites, which show that hydrated carbonaceous meteorites contain abundant organic matter, while anhydrous carbonaceous meteorites contain less carbon mostly in elemental form. But all anhydrous carbonaceous meteorites are depleted in moderately volatile and volatile elements in a pattern that suggested they experienced temperatures in excess of 1200°C, a temperature sufficient to destroy any organic matter they originally contained, while many anhydrous IDPs show no evidence of severe heating. These IDP results indicate that the bulk of the pre-biotic organic matter in extraterrestrial materials formed before aqueous processing, possibly by irradiation of C-bearing ices or by a Fisher-Tropsch type process operating in the gas phase of the nebula or in the interstellar medium.


2019 ◽  
Vol 630 ◽  
pp. A27 ◽  
Author(s):  
R. Isnard ◽  
A. Bardyn ◽  
N. Fray ◽  
C. Briois ◽  
H. Cottin ◽  
...  

Context. Because comets are part of the most primitive bodies of our solar system, establishing their chemical composition and comparing them to other astrophysical bodies gives new constraints on the formation and evolution of organic matter throughout the solar system. For two years, the time-of-flight secondary ion mass spectrometer COmetary Secondary Ion Mass Analyzer (COSIMA) on board the Rosetta orbiter performed in situ analyses of the dust particles ejected from comet 67P/Churyumov-Gerasimenko (67P). Aims. The aim is to determine the H/C elemental ratio of the refractory organic component contained in cometary particles of 67P. Methods. We analyzed terrestrial and extraterrestrial calibration samples using the COSIMA ground-reference model. Exploiting these calibration samples, we provide calibration lines in both positive and negative ion registration modes. Thus, we are now able to measure the cometary H/C elemental ratio. Results. The mean H/C value is 1.04 ± 0.16 based on 33 different cometary particles. Consequently, the H/C atomic ratio is on average higher in cometary particles of 67P than in even the most primitive insoluble organic matter extracted from meteorites. Conclusions. These results imply that the refractory organic matter detected in dust particles of 67P is less unsaturated than the material in meteorites.


2020 ◽  
Vol 9 (2) ◽  
pp. 135-313
Author(s):  
Bernard Marty

My journey in science began with the study of volcanic gases, sparking an interest in the origin, and ultimate fate, of the volatile elements in the interior of our planet. How did these elements, so crucial to life and our surface environment, come to be sequestered within the deepest regions of the Earth, and what can they tell us about the processes occurring there? My approach has been to establish geochemical links between the noble gases, physical tracers par excellence, with major volatile elements of environmental importance, such as water, carbon and nitrogen, in mantle-derived rocks and gases. From these analyses we have learned that the Earth is relatively depleted in volatile elements when compared to its potential cosmochemical ancestors (e.g., ~2 ppm nitrogen compared to several hundreds of ppm in primitive meteorites) and that natural fluxes of carbon are two orders of magnitude lower than those emitted by current anthropogenic activity. Further insights into the origin of terrestrial volatiles have come from space missions that documented the composition of the proto-solar nebula and the outer solar system. The consensus behind the origin of the atmosphere and the oceans is evolving constantly, although recently a general picture has started to emerge. At the dawn of the solar system, the volatile-forming elements (H, C, N, noble gases) that form the majority of our atmosphere and oceans were trapped in solid dusty phases (mostly in ice beyond the snowline and organics everywhere). These phases condensed from the proto-solar nebula gas, and/or were inherited from the interstellar medium. These accreted together within the next few million years to form the first planetesimals, some of which underwent differentiation very early on. The isotopic signatures of volatiles were also fixed very early and may even have preceded the first episodes of condensation and accretion. Throughout the accretion of the Earth, volatile elements were delivered by material from both the inner (dry, volatile-poor) and outer (volatile-rich) solar system. This delivery was concomitant with the metals and silicates that form the bulk of the planet. The contribution of bodies that formed in the far outer solar system, a region now populated by comets, is likely to have been very limited. In that sense, volatile elements were contributed continuously throughout Earth’s accretion from inner solar system reservoirs, which also provided the silicates and metal building blocks of the inner planets. Following accretion, it likely took a few hundred million years for the Earth’s atmosphere and oceans to stabilise. Luckily, we have been able to access a compositional record of the early atmosphere and oceans through the analysis of palaeo-atmospheric fluids trapped in Archean hydrothermal quartz. From these analyses, it appears that the surface reservoirs of the Earth evolved due to interactions between the early Sun and the top of the atmosphere, as well as the development of an early biosphere that progressively altered its chemistry.


1999 ◽  
Vol 173 ◽  
pp. 45-50
Author(s):  
L. Neslušan

AbstractComets are created in the cool, dense regions of interstellar clouds. These macroscopic bodies take place in the collapse of protostar cloud as mechanically moving bodies in contrast to the gas and miscroscopic dust holding the laws of hydrodynamics. In the presented contribution, there is given an evidence concerning the Solar system comets: if the velocity distribution of comets before the collapse was similar to that in the Oort cloud at the present, then the comets remained at large cloud-centric distances. Hence, the comets in the solar Oort cloud represent a relict of the nebular stage of the Solar system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Q. H. S. Chan ◽  
A. Stephant ◽  
I. A. Franchi ◽  
X. Zhao ◽  
R. Brunetto ◽  
...  

AbstractUnderstanding the true nature of extra-terrestrial water and organic matter that were present at the birth of our solar system, and their subsequent evolution, necessitates the study of pristine astromaterials. In this study, we have studied both the water and organic contents from a dust particle recovered from the surface of near-Earth asteroid 25143 Itokawa by the Hayabusa mission, which was the first mission that brought pristine asteroidal materials to Earth’s astromaterial collection. The organic matter is presented as both nanocrystalline graphite and disordered polyaromatic carbon with high D/H and 15N/14N ratios (δD =  + 4868 ± 2288‰; δ15N =  + 344 ± 20‰) signifying an explicit extra-terrestrial origin. The contrasting organic feature (graphitic and disordered) substantiates the rubble-pile asteroid model of Itokawa, and offers support for material mixing in the asteroid belt that occurred in scales from small dust infall to catastrophic impacts of large asteroidal parent bodies. Our analysis of Itokawa water indicates that the asteroid has incorporated D-poor water ice at the abundance on par with inner solar system bodies. The asteroid was metamorphosed and dehydrated on the formerly large asteroid, and was subsequently evolved via late-stage hydration, modified by D-enriched exogenous organics and water derived from a carbonaceous parent body.


Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Walaa Elmasry ◽  
Yoko Kebukawa ◽  
Kensei Kobayashi

The extraterrestrial delivery of organics to primitive Earth has been supported by many laboratory and space experiments. Minerals played an important role in the evolution of meteoritic organic matter. In this study, we simulated aqueous alteration in small bodies by using a solution mixture of H2CO and NH3 in the presence of water at 150 °C under different heating durations, which produced amino acids after acid hydrolysis. Moreover, minerals were added to the previous mixture to examine their catalyzing/inhibiting impact on amino acid formation. Without minerals, glycine was the dominant amino acid obtained at 1 d of the heating experiment, while alanine and β-alanine increased significantly and became dominant after 3 to 7 d. Minerals enhanced the yield of amino acids at short heating duration (1 d); however, they induced their decomposition at longer heating duration (7 d). Additionally, montmorillonite enhanced amino acid production at 1 d, while olivine and serpentine enhanced production at 3 d. Molecular weight distribution in the whole of the products obtained by gel chromatography showed that minerals enhanced both decomposition and combination of molecules. Our results indicate that minerals affected the formation of amino acids in aqueous environments in small Solar System bodies and that the amino acids could have different response behaviors according to different minerals.


Sign in / Sign up

Export Citation Format

Share Document