scholarly journals Self-assembly of smallest magnetic particles

2015 ◽  
Vol 112 (47) ◽  
pp. 14484-14489 ◽  
Author(s):  
Sara Mehdizadeh Taheri ◽  
Maria Michaelis ◽  
Thomas Friedrich ◽  
Beate Förster ◽  
Markus Drechsler ◽  
...  

The assembly of tiny magnetic particles in external magnetic fields is important for many applications ranging from data storage to medical technologies. The development of ever smaller magnetic structures is restricted by a size limit, where the particles are just barely magnetic. For such particles we report the discovery of a kind of solution assembly hitherto unobserved, to our knowledge. The fact that the assembly occurs in solution is very relevant for applications, where magnetic nanoparticles are either solution-processed or are used in liquid biological environments. Induced by an external magnetic field, nanocubes spontaneously assemble into 1D chains, 2D monolayer sheets, and large 3D cuboids with almost perfect internal ordering. The self-assembly of the nanocubes can be elucidated considering the dipole–dipole interaction of small superparamagnetic particles. Complex 3D geometrical arrangements of the nanodipoles are obtained under the assumption that the orientation of magnetization is freely adjustable within the superlattice and tends to minimize the binding energy. On that basis the magnetic moment of the cuboids can be explained.

2020 ◽  
Author(s):  
Stefan Bitter ◽  
Moritz Schlötter ◽  
Markus Schilling ◽  
Rainer Winter ◽  
Sebastian Polarz

We report on a novel multi-stimuli-responsive amphiphile, 1-(<i>Z</i>)-heptenyl-1’-dimethylammonium-methyl-(3-sulfopropyl)ferrocene<b> </b>(<b>6</b>), whose self-assembly properties can be altered by three different stimuli, namely: (i) the addition of external salts which serve to unfold the sultone headgroup, thus triggering self-assembly of <b>6</b> into vesicles; (ii) oxidation to <b>6<sup>+</sup></b>, which changes the lipophilic ferrocene to a hydrophilic ferrocenium entity, thereby broadening the size-distribution of the aggregates; and (iii) exposition of <b>6<sup>+</sup> </b>to an external magnetic field of 0.8 T. Under thease conditions and at sufficient concentration, <b>6</b><sup><b>+</b> </sup>forms large, tubular aggregates with lengths of up to 15 µm, which persist for over 5 min after the field is switched off again. <b>6<sup>+</sup></b> is thus the first amphiphile to exhibit a shape-hysteresis effect. The self-assembly/disassembly processes and their dynamics were studied live and in situ by optical birefringence measurements coupled to light scattering. <br>


2015 ◽  
Vol 6 ◽  
pp. 2123-2128 ◽  
Author(s):  
Xiaoyu Li ◽  
Hu Wang ◽  
Kenan Xie ◽  
Qin Long ◽  
Xuefei Lai ◽  
...  

Nickel nanowires with a mean diameter of about 95 nm and lengths of up to 26 μm were prepared by a chemical reduction method in aqueous solution under an external magnetic field. The self-assembly mechanism was investigated in detail. The results indicate that the self-assembly process of Ni nanowires consists of three stages: nucleation and growth, ordered alignment and self-assembly, and deposition on the surface and gaps between the nickel particles. The self-assembly phenomenon occurs only when nickel particles grow to a size of about 60 nm in the reaction system. This critical size, which is proposed for the first time, is very important to comprehend the self-assembly mechanism of Ni nanowires prepared with an external magnetic field.


2020 ◽  
Author(s):  
Stefan Bitter ◽  
Moritz Schlötter ◽  
Markus Schilling ◽  
Rainer Winter ◽  
Sebastian Polarz

We report on a novel multi-stimuli-responsive amphiphile, 1-(<i>Z</i>)-heptenyl-1’-dimethylammonium-methyl-(3-sulfopropyl)ferrocene<b> </b>(<b>6</b>), whose self-assembly properties can be altered by three different stimuli, namely: (i) the addition of external salts which serve to unfold the sultone headgroup, thus triggering self-assembly of <b>6</b> into vesicles; (ii) oxidation to <b>6<sup>+</sup></b>, which changes the lipophilic ferrocene to a hydrophilic ferrocenium entity, thereby broadening the size-distribution of the aggregates; and (iii) exposition of <b>6<sup>+</sup> </b>to an external magnetic field of 0.8 T. Under thease conditions and at sufficient concentration, <b>6</b><sup><b>+</b> </sup>forms large, tubular aggregates with lengths of up to 15 µm, which persist for over 5 min after the field is switched off again. <b>6<sup>+</sup></b> is thus the first amphiphile to exhibit a shape-hysteresis effect. The self-assembly/disassembly processes and their dynamics were studied live and in situ by optical birefringence measurements coupled to light scattering. <br>


2021 ◽  
Vol 12 (1) ◽  
pp. 270-281
Author(s):  
Stefan Bitter ◽  
Moritz Schlötter ◽  
Markus Schilling ◽  
Marina Krumova ◽  
Sebastian Polarz ◽  
...  

The self-organization properties of a stimuli responsive amphiphile can be altered by subjecting the paramagnetic oxidized form to a magnetic field of 0.8 T and monitored in real time by coupling optical birefringence with dynamic light scattering.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1870
Author(s):  
Dmitry Borin ◽  
Robert Müller ◽  
Stefan Odenbach

This paper presents the results of an experimental study of the influence of an external magnetic field on the shear flow behaviour of a magnetic fluid based on barium hexaferrite nanoplates. With the use of rheometry, the magnetoviscosity and field-dependent yield-stress in the fluid are evaluated. The observed fluid behaviour is compared to that of ferrofluids with magnetic nanoparticles having high dipole interaction. The results obtained supplement the so-far poorly studied topic of the influence of magnetic nanoparticles’ shape on magnetoviscous effects. It is concluded that the parameter determining the observed magnetoviscous effects in the fluid under study is the ratio V2/l3, where V is the volume of the nanoparticle and l is the size of the nanoparticle in the direction corresponding to its orientation in the externally applied magnetic field.


2012 ◽  
Vol 430-432 ◽  
pp. 1979-1983
Author(s):  
Wei Bang Feng ◽  
Xue Yang ◽  
Zhi Qiang Lv

Magneto-rheological elastomer( MR elastomer) is an emerging intelligent material made up of macromolecule polymer and magnetic particles. While a promising wide application it has in the fields of warships vibration controlling for its controllable mechanical, electrical and magnetic properties by external magnetic field, design and application of devices based on it are facing great limitations imposed by its poor performance in mechanical properties and magneto effect. Aiming at developing a practical MR elastomer, a new confecting method was proposed in this paper. Then, following this new method and using a specificly designed solidifying matrix, an amido- polyester MR elastomer was developed with its mechanical property systemically explored.


2000 ◽  
Vol 10 (8) ◽  
pp. 1925-1932 ◽  
Author(s):  
Louise Affleck ◽  
Marco D. Aguas ◽  
Ivan P. Parkin ◽  
Quentin A. Pankhurst ◽  
Maxim V. Kuznetsov

2016 ◽  
Vol 82 (13) ◽  
pp. 3886-3891 ◽  
Author(s):  
Masayoshi Tanaka ◽  
William Knowles ◽  
Rosemary Brown ◽  
Nicole Hondow ◽  
Atsushi Arakaki ◽  
...  

ABSTRACTUsing microorganisms to remove waste and/or neutralize pollutants from contaminated water is attracting much attention due to the environmentally friendly nature of this methodology. However, cell recovery remains a bottleneck and a considerable challenge for the development of this process. Magnetotactic bacteria are a unique group of organisms that can be manipulated by an external magnetic field due to the presence of biogenic magnetite crystals formed within their cells. In this study, we demonstrated an account of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria alongside and independent of magnetite crystal biomineralization when grown in a medium containing selenium oxyanion (SeO32−). Quantitative analysis shows that magnetotactic bacteria accumulate the largest amount of target molecules (Se) per cell compared with any other previously reported nonferrous metal/metalloid. For example, 2.4 and 174 times more Se is accumulated than Te taken up into cells and Cd2+adsorbed onto the cell surface, respectively. Crucially, the bacteria with high levels of Se accumulation were successfully recovered with an external magnetic field. The biomagnetic recovery and the effective accumulation of target elements demonstrate the potential for application in bioremediation of polluted water.IMPORTANCEThe development of a technique for effective environmental water remediation is urgently required across the globe. A biological remediation process of waste removal and/or neutralization of pollutant from contaminated water using microorganisms has great potential, but cell recovery remains a bottleneck. Magnetotactic bacteria synthesize magnetic particles within their cells, which can be recovered by a magnetic field. Herein, we report an example of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria independent of magnetic particle synthesis. The cells were able to accumulate the largest amount of Se compared to other foreign elements. More importantly, the Se-accumulating bacteria were successfully recovered with an external magnetic field. We believe magnetotactic bacteria confer unique advantages of biomagnetic cell recovery and of Se accumulation, providing a new and effective methodology for bioremediation of polluted water.


Sign in / Sign up

Export Citation Format

Share Document