scholarly journals Tunable allosteric library of caspase-3 identifies coupling between conserved water molecules and conformational selection

2016 ◽  
Vol 113 (41) ◽  
pp. E6080-E6088 ◽  
Author(s):  
Joseph J. Maciag ◽  
Sarah H. Mackenzie ◽  
Matthew B. Tucker ◽  
Joshua L. Schipper ◽  
Paul Swartz ◽  
...  

The native ensemble of caspases is described globally by a complex energy landscape where the binding of substrate selects for the active conformation, whereas targeting an allosteric site in the dimer interface selects an inactive conformation that contains disordered active-site loops. Mutations and posttranslational modifications stabilize high-energy inactive conformations, with mostly formed, but distorted, active sites. To examine the interconversion of active and inactive states in the ensemble, we used detection of related solvent positions to analyze 4,995 waters in 15 high-resolution (<2.0 Å) structures of wild-type caspase-3, resulting in 450 clusters with the most highly conserved set containing 145 water molecules. The data show that regions of the protein that contact the conserved waters also correspond to sites of posttranslational modifications, suggesting that the conserved waters are an integral part of allosteric mechanisms. To test this hypothesis, we created a library of 19 caspase-3 variants through saturation mutagenesis in a single position of the allosteric site of the dimer interface, and we show that the enzyme activity varies by more than four orders of magnitude. Altogether, our database consists of 37 high-resolution structures of caspase-3 variants, and we demonstrate that the decrease in activity correlates with a loss of conserved water molecules. The data show that the activity of caspase-3 can be fine-tuned through globally desolvating the active conformation within the native ensemble, providing a mechanism for cells to repartition the ensemble and thus fine-tune activity through conformational selection.

2008 ◽  
Vol 52 (3) ◽  
pp. 1072-1079 ◽  
Author(s):  
Fabian Bös ◽  
Jürgen Pleiss

ABSTRACT A set of 49 high-resolution (≤2.2 Å) structures of the TEM, SHV, and CTX-M class A β-lactamase families was systematically analyzed to investigate the role of conserved water molecules in the stabilization of the Ω-loop. Overall, 13 water molecules were found to be conserved in at least 45 structures, including two water positions which were found to be conserved in all structures. Of the 13 conserved water molecules, 6 are located at the Ω-loop, forming a dense cluster with hydrogen bonds to residues at the Ω-loop as well as to the rest of the protein. This layer of conserved water molecules is packed between the Ω-loop and the rest of the protein and acts as structural glue, which could reduce the flexibility of the Ω-loop. A correlation between conserved water molecules and conserved protein residues could in general not be detected, with the exception of the conserved water molecules at the Ω-loop. Furthermore, the evolutionary relationship between the three families, derived from the number of conserved water molecules, is similar to the relationship derived from phylogenetic analysis.


2012 ◽  
Vol 32 (4) ◽  
pp. 401-411 ◽  
Author(s):  
Jad Walters ◽  
Joshua L. Schipper ◽  
Paul Swartz ◽  
Carla Mattos ◽  
A. Clay Clark

A mutation in the allosteric site of the caspase 3 dimer interface of Val266 to histidine abolishes activity of the enzyme, and models predict that the mutation mimics the action of small molecule allosteric inhibitors by preventing formation of the active site. Mutations were coupled to His266 at two sites in the interface, E124A and Y197C. We present results from X-ray crystallography, enzymatic activity and molecular dynamics simulations for seven proteins, consisting of single, double and triple mutants. The results demonstrate that considering allosteric inhibition of caspase 3 as a shift between discrete ‘off-state’ or ‘on-state’ conformations is insufficient. Although His266 is accommodated in the interface, the structural defects are propagated to the active site through a helix on the protein surface. A more comprehensive view of allosteric regulation of caspase 3 requires the representation of an ensemble of inactive states and shows that subtle structural changes lead to the population of the inactive ensemble.


Author(s):  
Z. Horita ◽  
D. J. Smith ◽  
M. Furukawa ◽  
M. Nemoto ◽  
R. Z. Valiev ◽  
...  

It is possible to produce metallic materials with submicrometer-grained (SMG) structures by imposing an intense plastic strain under quasi-hydrostatic pressure. Studies using conventional transmission electron microscopy (CTEM) showed that many grain boundaries in the SMG structures appeared diffuse in nature with poorly defined transition zones between individual grains. The implication of the CTEM observations is that the grain boundaries of the SMG structures are in a high energy state, having non-equilibrium character. It is anticipated that high-resolution electron microscopy (HREM) will serve to reveal a precise nature of the grain boundary structure in SMG materials. A recent study on nanocrystalline Ni and Ni3Al showed lattice distortion and dilatations in the vicinity of the grain boundaries. In this study, HREM observations are undertaken to examine the atomic structure of grain boundaries in an SMG Al-based Al-Mg alloy.An Al-3%Mg solid solution alloy was subjected to torsion straining to produce an equiaxed grain structure with an average grain size of ~0.09 μm.


Author(s):  
Klaus-Ruediger Peters

Topographic ultra high resolution can now routinely be established on bulk samples in cold field emission scanning electron microscopy with a second generation of microscopes (FSEM) designed to provide 0.5 nm probe diameters. If such small probes are used for high magnification imaging, topographic contrast is so high that remarkably fine details can be imaged on 2DMSO/osmium-impregnated specimens at ribosome surfaces even without a metal coating. On TCH/osmium-impregnated specimens topographic resolution can be increased further if the SE-I imaging mode is applied. This requires that beam diameter and metal coating thickness be made smaller than the SE range of ~1 nm and background signal contributions be reduced. Subnanometer small probes can be obtained (only) at high accelerating voltages. Subnanometer thin continuous metal films can be produced under the following conditions: self-shadowing effect between metal atoms must be reduced through appropriate deposition techniques and surface mobility of metal atoms must be diminished through high energy sputtering and/or specimen cooling.


2000 ◽  
Vol 639 ◽  
Author(s):  
Philomela Komninou ◽  
Joseph Kioseoglou ◽  
Eirini Sarigiannidou ◽  
George P. Dimitrakopulos ◽  
Thomas Kehagias ◽  
...  

ABSTRACTThe interaction of growth intrinsic stacking faults with inversion domain boundaries in GaN epitaxial layers is studied by high resolution electron microscopy. It is observed that stacking faults may mediate a structural transformation of inversion domain boundaries, from the low energy types, known as IDB boundaries, to the high energy ones, known as Holt-type boundaries. Such interactions may be attributed to the different growth rates of adjacent domains of inverse polarity.


2007 ◽  
Vol 539-543 ◽  
pp. 2353-2358 ◽  
Author(s):  
Ulrich Lienert ◽  
Jonathan Almer ◽  
Bo Jakobsen ◽  
Wolfgang Pantleon ◽  
Henning Friis Poulsen ◽  
...  

The implementation of 3-Dimensional X-Ray Diffraction (3DXRD) Microscopy at the Advanced Photon Source is described. The technique enables the non-destructive structural characterization of polycrystalline bulk materials and is therefore suitable for in situ studies during thermo-mechanical processing. High energy synchrotron radiation and area detectors are employed. First, a forward modeling approach for the reconstruction of grain boundaries from high resolution diffraction images is described. Second, a high resolution reciprocal space mapping technique of individual grains is presented.


2017 ◽  
Vol 24 (5) ◽  
pp. 053104 ◽  
Author(s):  
R. Tommasini ◽  
C. Bailey ◽  
D. K. Bradley ◽  
M. Bowers ◽  
H. Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document