scholarly journals Genetic architecture of nonadditive inheritance in Arabidopsis thaliana hybrids

2016 ◽  
Vol 113 (46) ◽  
pp. E7317-E7326 ◽  
Author(s):  
Danelle K. Seymour ◽  
Eunyoung Chae ◽  
Dominik G. Grimm ◽  
Carmen Martín Pizarro ◽  
Anette Habring-Müller ◽  
...  

The ubiquity of nonparental hybrid phenotypes, such as hybrid vigor and hybrid inferiority, has interested biologists for over a century and is of considerable agricultural importance. Although examples of both phenomena have been subject to intense investigation, no general model for the molecular basis of nonadditive genetic variance has emerged, and prediction of hybrid phenotypes from parental information continues to be a challenge. Here we explore the genetics of hybrid phenotype in 435 Arabidopsis thaliana individuals derived from intercrosses of 30 parents in a half diallel mating scheme. We find that nonadditive genetic effects are a major component of genetic variation in this population and that the genetic basis of hybrid phenotype can be mapped using genome-wide association (GWA) techniques. Significant loci together can explain as much as 20% of phenotypic variation in the surveyed population and include examples that have both classical dominant and overdominant effects. One candidate region inherited dominantly in the half diallel contains the gene for the MADS-box transcription factor AGAMOUS-LIKE 50 (AGL50), which we show directly to alter flowering time in the predicted manner. Our study not only illustrates the promise of GWA approaches to dissect the genetic architecture underpinning hybrid performance but also demonstrates the contribution of classical dominance to genetic variance.

2021 ◽  
Author(s):  
◽  
Noémie Valenza-Troubat

<p><b>Understanding the relationship between DNA sequence variation and the diversity of observable traits across the tree of life is a central research theme in biology. In all organisms, most traits vary continuously between individuals. Explaining the genetic basis of this quantitative variation requires disentangling genetic from non-genetic factors, as well as their interactions. The identification of causal genetic variants yields fundamental insights into how evolution creates diversity across the tree of life. Ultimately, this information can be used for medical, environmental and agricultural applications. Aquaculture is an industry that is experiencing significant global growth and is benefiting from the advances of genomic research. Genomic information helps to improve complex commercial phenotypes such as growth traits, which are easily quantified visually, but influenced by polygenes and multiple environmental factors, such as temperature. In the context of a global food crisis and environmental change, there is an urgent need not only to understand which genetic variants are potential candidates for selection gains, but also how the architecture of these traits are composed (e.g. monogenes, polygenes) and how they are influenced by and interact with the environment. The overall goal of this thesis research was to generate a genome-wide multi-omics dataset matched with exhaustive phenotypic information derived from a F0-F1 pedigree to investigate the quantitative genetic basis of growth in the New Zealand silver trevally (Pseudocaranx georgianus). These data were used to identify genomic regions that co-segregate with growth traits, and to describe the regulation of the genes involved in response to temperature fluctuations. The findings of this research helped gain fundamental insights into the genotype–phenotype map in an important teleost species and understand its ability to dynamically respond to temperature variations. This will ultimately support the establishment of a genomics-informed New Zealand aquaculture breeding programme. </b></p> <p>Chapter 1 of this thesis provides an overview of how genes interact with the environment to produce various growth phenotypes and how an understanding of this is important in aquaculture. This first chapter provides the deeper context for the research in subsequent data chapters. </p> <p>Chapter 2 describes the study population, the collection of phenotypic and genotypic data, and a first description of the genetic parameters of growth traits in trevally. A combination of Whole Genome Sequencing (WGS) and Genotyping-By-Sequencing (GBS) techniques were used to generate 60 thousand Single Nucleotide Polymorphism (SNP) markers for individuals in a two-generation pedigree. Together with phenotypic data, the genotyping data were used to reconstruct the pedigree, measure inbreeding levels, and estimate heritability for 10 growth traits. Parents were identified for 63% of the offspring and successful pedigree reconstruction indicated highly uneven contributions of each parent, and between the sexes, to the subsequent generation. The average inbreeding levels did not change between generations, but were significantly different between families. Growth patterns were found to be similar to that of other carangids and subject to seasonal variations. Heritability as well as genetic and phenotypic correlations were estimated using both a pedigree and a genomic relatedness matrix. All growth trait heritability estimates and correlations were found to be consistently high and positively correlated to each other. </p> <p>In Chapter 3, genotypic and phenotypic data were used to carry out linkage mapping and a genome-wide association study (GWAS) to map quantitative trait loci (QTLs) associated with growth differences in the F1 population. A linkage map was generated using the largest family, which allowed to scan for rare variants associated with the traits. The linkage map reported in this thesis is the first one for the Pseudocaranx genus and one of the densest for the carangid family. It included 19,861 SNPs contained in 24 linkage groups, which correspond to the 24 trevally chromosomes. Eight significant QTLs associated with height, length and weight were discovered on three linkage groups. Using GWAS, 113 SNPs associated with nine traits were identified and 29 genetic growth hot spots were uncovered. Two of the GWAS markers co-located with the QTLs discovered with the linkage mapping analysis. This demonstrates that combining QTL mapping and GWAS represents a powerful approach for the identification and validation of loci controlling complex phenotypes, such as growth, and provides important insights into the genetic architecture of these traits. </p> <p>Chapter 4, the last data chapter, investigates plasticity in gene expression patterns and growth of juvenile trevally, in response to different temperatures. Temperature conditions were experimentally manipulated for 1 month to mimic seasonal extremes. Phenotypic differences in growth were measured in 400 individuals, and the gene expression patterns of the pituitary gland and the liver were compared across treatments in a subset of 100 individuals, using RNA sequencing. Results showed that growth increased 50% more in the warmer compared with the colder condition, suggesting that temperature has a large impact on the metabolic activity associated with growth. We were able to annotate 27,887 gene models and found 39 differentially expressed genes (DEGs) in the pituitary, and 238 in the liver. Of these, 6 DEGs showed a common expression pattern between the tissues. Annotated blast matches of all DEGs revealed genes linked to major pathways affecting metabolism and reproduction. Our results indicate that native New Zealand trevally exhibit predictable plastic regulatory responses to temperature stress and the genes identified provide excellent for selective breeding objectives and studied how populations may adapt to increasing temperatures.</p> <p>Finally, Chapter 5 discusses the implications, future directions, and application of this research for trevally and other breeding programmes. It more broadly highlights the insights that were gained on the genetic architecture of growth, and the role of temperature in interacting and modulating genes involved in plastic growth responses.</p>


2014 ◽  
Author(s):  
Jennifer Lachowiec ◽  
Xia Shen ◽  
Christine Queitsch ◽  
Örjan Carlborg

Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. Here, we examined the genetics of Arabidopsis thaliana root length and found that the narrow-sense heritability for this trait was statistically zero. This low additive genetic variance likely explains why no associations to root length could be found using standard additive-model-based genome-wide association (GWA) approaches. However, the broad-sense heritability for root length was significantly larger, and we therefore also performed an epistatic GWA analysis to map loci contributing to the epistatic genetic variance. This analysis revealed four interacting pairs involving seven chromosomal loci that passed a standard multiple-testing corrected significance threshold. Explorations of the genotype-phenotype maps for these pairs revealed that the detected epistasis cancelled out the additive genetic variance, explaining why these loci were not detected in the additive GWA analysis. Small population sizes, such as in our experiment, increase the risk of identifying false epistatic interactions due to testing for associations with very large numbers of multi-marker genotypes in few phenotyped individuals. Therefore, we estimated the false-positive risk using a new statistical approach that suggested half of the associated pairs to be true positive associations. Our experimental evaluation of candidate genes within the seven associated loci suggests that this estimate is conservative; we identified functional candidate genes that affected root development in four loci that were part of three of the pairs. In summary, statistical epistatic analyses were found to be indispensable for confirming known, and identifying several new, functional candidate genes for root length using a population of wild-collected A. thaliana accessions. We also illustrated how epistatic cancellation of the additive genetic variance resulted in an insignificant narrow-sense, but significant broad-sense heritability that could be dissected into the contributions of several individual loci using a combination of careful statistical epistatic analyses and functional genetic experiments.


2021 ◽  
Author(s):  
James R Whiting ◽  
Josephine R Paris ◽  
Paul J Parsons ◽  
Sophie Matthews ◽  
Yuridia Reynoso ◽  
...  

The genetic basis of traits can shape and constrain how adaptation proceeds in nature; rapid adaptation can be facilitated by polygenic traits, whereas polygenic traits may restrict re-use of the same genes in adaptation (genetic convergence). The rapidly evolving life histories of guppies in response to predation risk provide an opportunity to test this proposition. Guppies adapted to high- (HP) and low-predation (LP) environments in northern Trinidad evolve rapidly and convergently among natural populations. This system has been studied extensively at the phenotypic level, but little is known about the underlying genetic architecture. Here, we use an F2 QTL design to examine the genetic basis of seven (five female, two male) guppy life history phenotypes. We use RAD-sequencing data (16,539 SNPs) from 370 male and 267 female F2 individuals. We perform linkage mapping, estimates of genome-wide and per-chromosome heritability (multi-locus associations), and QTL mapping (single-locus associations). Our results are consistent with architectures of many-loci of small effect for male age and size at maturity and female interbrood period. Male trait associations are clustered on specific chromosomes, but female interbrood period exhibits a weak genome-wide signal suggesting a potentially highly polygenic component. Offspring weight and female size at maturity are also associated with a single significant QTL each. These results suggest rapid phenotypic evolution of guppies may be facilitated by polygenic trait architectures, but these may restrict gene-reuse across populations, in agreement with an absence of strong signatures of genetic convergence from recent population genomic analyses of wild HP-LP guppies.


2021 ◽  
Author(s):  
◽  
Noémie Valenza-Troubat

<p><b>Understanding the relationship between DNA sequence variation and the diversity of observable traits across the tree of life is a central research theme in biology. In all organisms, most traits vary continuously between individuals. Explaining the genetic basis of this quantitative variation requires disentangling genetic from non-genetic factors, as well as their interactions. The identification of causal genetic variants yields fundamental insights into how evolution creates diversity across the tree of life. Ultimately, this information can be used for medical, environmental and agricultural applications. Aquaculture is an industry that is experiencing significant global growth and is benefiting from the advances of genomic research. Genomic information helps to improve complex commercial phenotypes such as growth traits, which are easily quantified visually, but influenced by polygenes and multiple environmental factors, such as temperature. In the context of a global food crisis and environmental change, there is an urgent need not only to understand which genetic variants are potential candidates for selection gains, but also how the architecture of these traits are composed (e.g. monogenes, polygenes) and how they are influenced by and interact with the environment. The overall goal of this thesis research was to generate a genome-wide multi-omics dataset matched with exhaustive phenotypic information derived from a F0-F1 pedigree to investigate the quantitative genetic basis of growth in the New Zealand silver trevally (Pseudocaranx georgianus). These data were used to identify genomic regions that co-segregate with growth traits, and to describe the regulation of the genes involved in response to temperature fluctuations. The findings of this research helped gain fundamental insights into the genotype–phenotype map in an important teleost species and understand its ability to dynamically respond to temperature variations. This will ultimately support the establishment of a genomics-informed New Zealand aquaculture breeding programme. </b></p> <p>Chapter 1 of this thesis provides an overview of how genes interact with the environment to produce various growth phenotypes and how an understanding of this is important in aquaculture. This first chapter provides the deeper context for the research in subsequent data chapters. </p> <p>Chapter 2 describes the study population, the collection of phenotypic and genotypic data, and a first description of the genetic parameters of growth traits in trevally. A combination of Whole Genome Sequencing (WGS) and Genotyping-By-Sequencing (GBS) techniques were used to generate 60 thousand Single Nucleotide Polymorphism (SNP) markers for individuals in a two-generation pedigree. Together with phenotypic data, the genotyping data were used to reconstruct the pedigree, measure inbreeding levels, and estimate heritability for 10 growth traits. Parents were identified for 63% of the offspring and successful pedigree reconstruction indicated highly uneven contributions of each parent, and between the sexes, to the subsequent generation. The average inbreeding levels did not change between generations, but were significantly different between families. Growth patterns were found to be similar to that of other carangids and subject to seasonal variations. Heritability as well as genetic and phenotypic correlations were estimated using both a pedigree and a genomic relatedness matrix. All growth trait heritability estimates and correlations were found to be consistently high and positively correlated to each other. </p> <p>In Chapter 3, genotypic and phenotypic data were used to carry out linkage mapping and a genome-wide association study (GWAS) to map quantitative trait loci (QTLs) associated with growth differences in the F1 population. A linkage map was generated using the largest family, which allowed to scan for rare variants associated with the traits. The linkage map reported in this thesis is the first one for the Pseudocaranx genus and one of the densest for the carangid family. It included 19,861 SNPs contained in 24 linkage groups, which correspond to the 24 trevally chromosomes. Eight significant QTLs associated with height, length and weight were discovered on three linkage groups. Using GWAS, 113 SNPs associated with nine traits were identified and 29 genetic growth hot spots were uncovered. Two of the GWAS markers co-located with the QTLs discovered with the linkage mapping analysis. This demonstrates that combining QTL mapping and GWAS represents a powerful approach for the identification and validation of loci controlling complex phenotypes, such as growth, and provides important insights into the genetic architecture of these traits. </p> <p>Chapter 4, the last data chapter, investigates plasticity in gene expression patterns and growth of juvenile trevally, in response to different temperatures. Temperature conditions were experimentally manipulated for 1 month to mimic seasonal extremes. Phenotypic differences in growth were measured in 400 individuals, and the gene expression patterns of the pituitary gland and the liver were compared across treatments in a subset of 100 individuals, using RNA sequencing. Results showed that growth increased 50% more in the warmer compared with the colder condition, suggesting that temperature has a large impact on the metabolic activity associated with growth. We were able to annotate 27,887 gene models and found 39 differentially expressed genes (DEGs) in the pituitary, and 238 in the liver. Of these, 6 DEGs showed a common expression pattern between the tissues. Annotated blast matches of all DEGs revealed genes linked to major pathways affecting metabolism and reproduction. Our results indicate that native New Zealand trevally exhibit predictable plastic regulatory responses to temperature stress and the genes identified provide excellent for selective breeding objectives and studied how populations may adapt to increasing temperatures.</p> <p>Finally, Chapter 5 discusses the implications, future directions, and application of this research for trevally and other breeding programmes. It more broadly highlights the insights that were gained on the genetic architecture of growth, and the role of temperature in interacting and modulating genes involved in plastic growth responses.</p>


2020 ◽  
Author(s):  
T Flutre ◽  
L Le Cunff ◽  
A Fodor ◽  
A Launay ◽  
C Romieu ◽  
...  

SummaryTo cope with the challenges facing agriculture, speeding-up breeding programs is a worthy endeavor, especially for perennials, but requires to understand the genetic architecture of important traits. To go beyond QTL mapping in bi-parental crosses, we exploited a diverse panel of 279 Vitis vinifera L. cultivars. This panel planted in five blocks in the vineyard was phenotyped over several years for 127 traits including yield components, organic acids, aroma precursors, polyphenols, and a water stress indicator. Such an experimental design allowed us to reliably assess the genotypic values for most traits. The panel was genotyped for 60k SNPs by combining an 18K microarray and sequencing (GBS). Marker densification via GBS markedly increased the proportion of genetic variance explained by SNPs, and two multi-SNP models identified QTLs not found by a SNP-by-SNP model. This led to 489 reliable QTLs using the combined microarray-GBS SNPs for 41% more response variables than a SNP-by-SNP model applied to microarray-only SNPs, and many QTLs were new compared to the results from bi-parental crosses. Prediction accuracy ranging from 0.14 to 0.84 for 80% of the response variables was promising for genomic selection, and provided insights into the genetic architecture of each trait when put in perspective with the number of QTLs and heritability.


2019 ◽  
Author(s):  
Mark J. Adams ◽  
David M. Howard ◽  
Michelle Luciano ◽  
Toni-Kim Clarke ◽  
Gail Davies ◽  
...  

AbstractMajor depressive disorder and neuroticism share a large genetic basis. We sought to determine whether this shared basis could be decomposed to identify genetic factors that are specific to depression. We analysed two sets of summary statistics from genome-wide association studies of depression (from the Psychiatric Genomics Consortium and 23andMe) and compared them to GWAS of neuroticism (from UK Biobank). First, we used a pairwise GWAS analysis to classify variants as associated with only depression, with only neuroticism, or with both. Second, we estimated partial genetic correlations to test whether the depression’s genetic link with other phenotypes was explained by shared overlap with neuroticism. We found evidence that most genetic variants associated with depression are likely to be shared with neuroticism. The overlapping common genetic variance of depression and neuroticism was negatively genetically correlated with cognitive function and positively genetically correlated with several psychiatric disorders. We found that the genetic contributions unique to depression, and not shared with neuroticism, were correlated with inflammation, cardiovascular disease, and sleep patterns. Our findings demonstrate that, while genetic risk factors for depression are largely shared with neuroticism, there are also non-neuroticism related features of depression that may be useful for further patient or phenotypic stratification.


2020 ◽  
Author(s):  
J.M. Kreiner ◽  
P.J. Tranel ◽  
D. Weigel ◽  
J.R. Stinchcombe ◽  
S.I. Wright

AbstractAlthough much of what we know about the genetic basis of herbicide resistance has come from detailed investigations of monogenic adaptation at known target-sites, the importance of polygenic resistance has been increasingly recognized. Despite this, little work has been done to characterize the genomic basis of herbicide resistance, including the number and distribution of involved genes, their effect sizes, allele frequencies, and signatures of selection. Here we implement genome-wide association (GWA) and population genomic approaches to examine the genetic architecture of glyphosate resistance in the problematic agricultural weed, Amaranthus tuberculatus. GWA correctly identifies the gene targeted by glyphosate, and additionally finds more than 100 genes across all 16 chromosomes associated with resistance. The encoded proteins have relevant non-target-site resistance and stress-related functions, with potential for pleiotropic roles in resistance to other herbicides and diverse life history traits. Resistance-related alleles are enriched for large effects and intermediate frequencies, implying that strong selection has shaped the genetic architecture of resistance despite potential pleiotropic costs. The range of common and rare allele involvement implies a partially shared genetic basis of non-target-site resistance across populations, complemented by population-specific alleles. Resistance-related alleles show evidence of balancing selection, and suggest a long-term maintenance of standing variation at stress-response loci that have implications for plant performance under herbicide pressure. By our estimates, genome-wide SNPs explain a comparable amount of the total variation in glyphosate resistance to monogenic mechanisms, indicating the potential for an underappreciated polygenic contribution to the evolution of herbicide resistance in weed populations.


Author(s):  
Luke M. Evans ◽  
Seonkyeong Jang ◽  
Marissa A. Ehringer ◽  
Jacqueline M. Otto ◽  
Scott I. Vrieze ◽  
...  

AbstractBackground and AimsSmoking is a leading cause of premature death. Although genome-wide association studies have identified many loci that influence smoking behaviors, much of the genetic variance in these traits remains unexplained. We sought to characterize the genetic architecture of four smoking behaviors through SNP-based heritability (h2SNP) analyses.DesignWe applied recently-developed partitioned h2SNP approaches to smoking behavior traits assessed in the UK Biobank.SettingUK Biobank.ParticipantsUK Biobank participants of European ancestry. The number of participants varied depending on the trait, from 54,792 to 323,068.MeasurementsSmoking initiation, age of initiation, cigarettes per day (CPD; count, log-transformed, binned, and dichotomized into heavy versus light), and smoking cessation. Imputed genome-wide SNPs.FindingsWe estimated h2SNP(SE)=0.18(0.01) for smoking initiation and 0.12(0.02) for smoking cessation, which were more than twice the previously reported estimates. Estimated age of initiation h2SNP=0.05(0.01) and binned CPD h2SNP=0.1(0.01) were similar to previous reports. These estimates remained substantially below published twin-based h2 of roughly 50%. CPD encoding strongly influenced estimates, with dichotomized CPD h2SNP=0.28. We found significant contributions of low-frequency variants and variants in low linkage-disequilibrium (LD) with surrounding genomic regions. Functional annotations related to LD, allele frequency, sequence conservation, and selective constraint also contributed significantly to the partitioned heritability. We found no evidence of dominance genetic variance for any trait.Conclusionh2SNP of these four specific smoking behaviors is modest overall. The patterns of partitioned h2SNP for these highly polygenic traits is consistent with negative selection. We found a predominant contribution of common variants, and our results suggest a role of low-frequency or rare variants, poorly tagged by surrounding regions. Deep sequencing of large samples and/or improved imputation will be required to fully assess the role of rare variants.


Sign in / Sign up

Export Citation Format

Share Document