scholarly journals Plasmodium falciparum erythrocyte-binding antigen 175 triggers a biophysical change in the red blood cell that facilitates invasion

2017 ◽  
Vol 114 (16) ◽  
pp. 4225-4230 ◽  
Author(s):  
Marion Koch ◽  
Katherine E. Wright ◽  
Oliver Otto ◽  
Maik Herbig ◽  
Nichole D. Salinas ◽  
...  

Invasion of the red blood cell (RBC) by the Plasmodium parasite defines the start of malaria disease pathogenesis. To date, experimental investigations into invasion have focused predominantly on the role of parasite adhesins or signaling pathways and the identity of binding receptors on the red cell surface. A potential role for signaling pathways within the erythrocyte, which might alter red cell biophysical properties to facilitate invasion, has largely been ignored. The parasite erythrocyte-binding antigen 175 (EBA175), a protein required for entry in most parasite strains, plays a key role by binding to glycophorin A (GPA) on the red cell surface, although the function of this binding interaction is unknown. Here, using real-time deformability cytometry and flicker spectroscopy to define biophysical properties of the erythrocyte, we show that EBA175 binding to GPA leads to an increase in the cytoskeletal tension of the red cell and a reduction in the bending modulus of the cell’s membrane. We isolate the changes in the cytoskeleton and membrane and show that reduction in the bending modulus is directly correlated with parasite invasion efficiency. These data strongly imply that the malaria parasite primes the erythrocyte surface through its binding antigens, altering the biophysical nature of the target cell and thus reducing a critical energy barrier to invasion. This finding would constitute a major change in our concept of malaria parasite invasion, suggesting it is, in fact, a balance between parasite and host cell physical forces working together to facilitate entry.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1312-1312
Author(s):  
Grant C. Bullock ◽  
Lorrie L. Delehanty ◽  
Anne-Laure A Talbot ◽  
Chante Richardson ◽  
Adam Goldfarb

Abstract Abstract 1312 Anemia affects the quality of life and the life expectancy of millions of people in the U.S. Many patients are either intolerant or unresponsive to available treatments, so alternative strategies are needed. Red blood cell production requires the action of erythropoietin (Epo) on red blood cell precursors in the bone marrow. Iron restriction results in loss of Epo-responsiveness and anemia, despite increased serum Epo levels. Iron infusion restores Epo-responsiveness suggesting that iron dominantly regulates Epo-receptor (EpoR) signaling. Understanding how iron restriction regulates EpoR signaling pathways has major clinical significance. Agonists could offer an iron-free approach that enhances the response to Epo in anemia due to iron deficiency or chronic diseases. In addition, antagonists could be used to treat polycythemia vera or other myeloproliferative disorders. We have discovered that the aconitases, multifunctional iron-sulfur cluster proteins that convert citrate into isocitrate are key in connecting iron to Epo-signaling in early erythroid progenitors (GC Bullock, et. al. Blood 2010;116:97). We also discovered that isocitrate, the downstream product of aconitase, can enhance the effectiveness of Epo during iron deficiency in vitro and in vivo in mice with IDA. These observations suggest that isocitrate or derivatives of isocitrate that synergize with erythropoiesis stimulating agents (ESAs) have important therapeutic application in the treatment of anemia. Deletion of EpoR in mice is incompatible with life, however mice and humans that express truncated EpoR show increased production of red blood cells. These observations suggest that the distal cytoplasmic domain of the EpoR inhibits production of red cells and may play a critical role in iron deficiency anemia. EpoR mutant mice lacking the distal half of the cytoplasmic domain of the EpoR (EpoR-H mice) and mice with the same EpoR truncation mutation plus an additional mutation of tyrosine 343 (EpoR-HM mice) show near normal levels of steady state erythropoiesis. To determine the role of the distal domain in erythroid suppression during iron deficiency, EpoR-H, EpoR-HM and EpoR-wildtype mice were fed a low iron diet and compared by weekly CBCs and flow cytometry. EpoR-H mutant mice continue to efficiently produce red blood cells during iron deficiency. And this occurs despite a decrease in hemoglobin. EpoR-HM mice produce fewer rbcs than EpoR-H mice, however rbc production by EpoR-HM mice resists the suppressive effects of iron restriction. Similar experiments also suggest that the distal EpoR is necessary for the isocitrate-mediated enhancement of Epo-driven erythropoiesis. In addition to aconitase/isocitrate and the distal EpoR other candidate key signaling components of this Epo-dependent, iron-responsive pathway have been identified in our recent preliminary experiments. These components include specific protein kinase C (PKC) isozymes, AKT1 and ERK1/2. These findings support a new model of iron sensing by aconitase/isocitrate that alters EpoR signaling to decrease red blood cell production and conserve iron when supplies are low. This model fits better than older “heme-deficiency” models because disorders in heme synthesis block red cell differentiation at a later stage. This model also has potential to explain changes seen in other tissues during chronic iron deficiency. Nutritional iron restriction may have unmasked a new role for the distal EpoR in red cell development and implicated new iron-responsive Epo signaling pathways that can be used to develop new therapeutic agonists and antagonists of Epo. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Christina M. Birch ◽  
Han Wei Hou ◽  
Jongyoon Han ◽  
Jacquin C. Niles

1996 ◽  
Vol 13 (01) ◽  
pp. 27-33 ◽  
Author(s):  
Steven Inglis ◽  
Andrzej Lysikiewicz ◽  
Amy Sonnenblick ◽  
Jane Streltzoff ◽  
James Bussel ◽  
...  

2003 ◽  
Vol 94 (1) ◽  
pp. 38-42 ◽  
Author(s):  
R. D. Telford ◽  
G. J. Sly ◽  
A. G. Hahn ◽  
R. B. Cunningham ◽  
C. Bryant ◽  
...  

There is a wide body of literature reporting red cell hemolysis as occurring after various forms of exercise. Whereas the trauma associated with footstrike is thought to be the major cause of hemolysis after running, its significance compared with hemolysis that results from other circulatory stresses on the red blood cell has not been thoroughly addressed. To investigate the significance of footstrike, we measured the degree of hemolysis after 1 h of running. To control for the potential effects of oxidative and circulatory stresses on the red blood cell, the same subjects cycled for 1 h at equivalent oxygen uptake. Our subjects were 10 male triathletes, who each completed two separate 1-h sessions of running and cycling at 75% peak oxygen uptake, which were performed in random order 1 wk apart. Plasma free hemoglobin and serum haptoglobin concentrations were measured as indicators of hemolysis. We also measured methemoglobin as a percentage of total hemoglobin immediately postexercise as an indicator of red cell oxidative stress. Plasma free hemoglobin increased after both running ( P < 0.01) and cycling ( P < 0.01), but the increase was fourfold greater after running ( P < 0.01). This was reflected by a significant fall in haptoglobin 1 h after the running trials, whereas no significant changes occurred after cycling at any sample point. Methemoglobin increased twofold after both running and cycling ( P < 0.01), with no significant differences between modes of exercise. The present data indicate that, whereas general circulatory trauma to the red blood cells associated with 1 h of exercise at 75% maximal oxygen uptake may result in some exercise-induced hemolysis, footstrike is the major contributor to hemolysis during running.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Maria del Pilar Quintana ◽  
Jun-Hong Ch’ng ◽  
Kirsten Moll ◽  
Arash Zandian ◽  
Peter Nilsson ◽  
...  

2018 ◽  
Vol 9 (5) ◽  
pp. 91-95 ◽  
Author(s):  
Praveen Kumar Vemuri ◽  
Sanjay Madala ◽  
Vijaya Lakshmi Bodiga ◽  
Suryanarayana Veeravalli ◽  
Nithin Chand Kurra

Blood ◽  
1982 ◽  
Vol 60 (6) ◽  
pp. 1332-1336 ◽  
Author(s):  
MG Luthra ◽  
DA Sears

Abstract To determine whether diminished activity of the Ca++ extrusion pump could account for the high levels of red blood cell (RBC) Ca++ in sickle cell anemia (SS), we measured calmodulin-sensitive Ca++ ATPase activity in normal and SS RBC. Hemolysates prepared with saponin were compared, since such preparations expressed maximum ATPase activities, exceeding isolated membranes or reconstituted systems of membranes plus cytosol, SS RBC hemolysates had greater Ca++ ATPase activity than normal hemolysates; they exhibited higher Mg++ and Na+ + K+ ATPase activities as well. Assays on density (age) fractions of SS and normal red cells demonstrated that all ATPase activities were highest in low density (young) cells, and activities in SS red cells exceeded those in normals in all fractions studied. Thus, when studied under conditions that maximize enzyme activity, Ca++ ATPase activity, like Mg++ and Na+ + K+ ATPase, is actually increased in SS RBC, probably due to the young red cell population present. The elevated Ca++ levels in these cells are more likely due to an increased Ca++ leak or abnormal calcium binding than to defective extrusion by the ATPase pump.


2015 ◽  
Vol 05 (03) ◽  
pp. 004-008
Author(s):  
Mohammed Saleem E. K. ◽  
Soundarya Mahalingam ◽  
Shamee Shastri ◽  
Kamalakshi G. Bhat

AbstractThe development of red blood cell (RBC) isoimmunization with alloantibodies and autoantibodies complicate transfusion therapy in multiply transfused thalassemia patients. We conducted a study to analyse the frequency in our population. Clinical and antibody profile from 55 multiply transfused thalassemic patients who were receiving transfusions were collected and analyzed prospectively. A commercially available 3 cell antigen panel was used for the antibody screening procedure. If antibody screening with the 3-cell antigen panel was positive, an extended 11-cell antigen panel was used for antibody identification in LISS (Low Ionic Strength Solution). All patients received blood matched for only ABO and Rh (D) antigens. A total of 55 transfusion dependent â thalassemics were included in this study out of which 30 (54.55%) were males and 25(45.45%) females with a male to female ratio of 1.2: 1. Frequency of red cell alloimmunization in this study was found to be 1.8%. None of the patients developed red cell autoimmunization. The alloantibody identified in the the patient who developed alloimmunisation was was anti-K. In conclusion, the transfusion of matched blood is essential for chronically transfused beta thalassemia patients in order to avoid alloimmunization.


2015 ◽  
Vol 43 (4) ◽  
pp. 265-272 ◽  
Author(s):  
Wataru Kagaya ◽  
Shinya Miyazaki ◽  
Kazuhide Yahata ◽  
Nobuo Ohta ◽  
Osamu Kaneko

1955 ◽  
Vol 102 (6) ◽  
pp. 725-731 ◽  
Author(s):  
G. H. Whipple ◽  
F. S. Robscheit-Robbins ◽  
W. F. Bale

During active blood regeneration in anemia in dogs an increase occurs in the stroma protein of the red cells. When vitamin B12 with radioactive cobalt is given at the start of this blood regeneration one finds concentration of labeled B12 in the stroma protein but not in the hemoglobin. After the acute phase of red cell regeneration is ended the concentration of B12 in stroma protein falls rapidly to very low levels within 2 weeks. Subsequent episodes of red blood cell regeneration seems not to cause remobilization of radioactive cobalt into red cells from other body stores. It appears that the vitamin B12 is a factor of importance in the first steps of stroma protein formation in the first few days of the life of the red cell in the dog. This response in dogs and the response in pernicious anemia to vitamin B12 may have some points in common. Distribution of the B12-radioactive cobalt in the organs and tissues at autopsy has been recorded. Some very suggestive localizations were noted and some variation 1 week and 7 weeks after B12 injections. Radioactive cobalt escapes in the urine during the weeks following B12 injections.


Sign in / Sign up

Export Citation Format

Share Document