scholarly journals Origin, evolution, and global transmission of community-acquired Staphylococcus aureus ST8

2017 ◽  
Vol 114 (49) ◽  
pp. E10596-E10604 ◽  
Author(s):  
Lena Strauß ◽  
Marc Stegger ◽  
Patrick Eberechi Akpaka ◽  
Abraham Alabi ◽  
Sebastien Breurec ◽  
...  

USA300 is a pandemic clonal lineage of hypervirulent, community-acquired, methicillin-resistant Staphylococcus aureus (CA-MRSA) with specific molecular characteristics. Despite its high clinical relevance, the evolutionary origin of USA300 remained unclear. We used comparative genomics of 224 temporal and spatial diverse S. aureus isolates of multilocus sequence type (ST) 8 to reconstruct the molecular evolution and global dissemination of ST8, including USA300. Analyses of core SNP diversity and accessory genome variations showed that the ancestor of all ST8 S. aureus most likely emerged in Central Europe in the mid-19th century. From here, ST8 was exported to North America in the early 20th century and progressively acquired the USA300 characteristics Panton–Valentine leukocidin (PVL), SCCmec IVa, the arginine catabolic mobile element (ACME), and a specific mutation in capsular polysaccharide gene cap5E. Although the PVL-encoding phage ϕSa2USA was introduced into the ST8 background only once, various SCCmec types were introduced to ST8 at different times and places. Starting from North America, USA300 spread globally, including Africa. African USA300 isolates have aberrant spa-types (t112, t121) and form a monophyletic group within the clade of North American USA300. Large parts of ST8 methicillin-susceptible S. aureus (MSSA) isolated in Africa represent a symplesiomorphic group of ST8 (i.e., a group representing the characteristics of the ancestor), which are rarely found in other world regions. Isolates previously discussed as USA300 ancestors, including USA500 and a “historic” CA-MRSA from Western Australia, were shown to be only distantly related to recent USA300 clones.

2021 ◽  
Vol 12 ◽  
Author(s):  
Jo-Ann McClure ◽  
Sahreena Lakhundi ◽  
Amani Niazy ◽  
George Dong ◽  
Osahon Obasuyi ◽  
...  

Despite initially being described in North America, Staphylococcus aureus (SA) sequence type ST59 is the most commonly isolated sequence type in Eastern Asia. The origins and evolution of this strain type remains unclear and therefore we gathered a collection of ST59 isolates from Canada and mainland China for a detailed genetic analysis of the lineage. Bayesian inference phylogenomic analysis of our isolates, along with previously published ST59 sequences indicated that the lineage could be divided into 6 distinct subgroups (WGS-1 thorough 6), each having distinct molecular characteristics. Analysis also demonstrated the concurrent but separate evolution of North American and East Asian lineages, as well as the extensive diversification of the East Asian lineage. The presence of a mobile element structure (MES) was found to be the major difference between these two continental lineages, absent in all North American isolates, and present in all East Asian ones. Other mobile genetic elements, such as the Immune Evasion Complex (IEC), Panton Valentine Leukocidin (PVL), and Staphylococcal Cassette Chromosome mec (SCCmec), showed significant variability within each sub-group and likely represents local selective pressures rather than major characteristics defining the groups. Our analysis also demonstrated the existence of a more ancient ST59 sub-lineage from North America, which was MES negative and contained some of the earliest reported ST59 isolates. Combined with the existence of a MES negative isolate from Taiwan, predicted to have appeared prior to diversification of the East Asian lineages, these results hint at the possibility of a North American origin for the lineage, which gained hold in Eastern Asia following acquisition of MES, and subsequently diversified.


2019 ◽  
Vol 147 ◽  
Author(s):  
Xing Wang ◽  
Yanyun Shen ◽  
Weichun Huang ◽  
Yun Zhou

Abstract Community-acquired Staphylococcus aureus is a major pathogen responsible for skin and soft tissue infections (SSTIs). This study aimed to investigate the prevalence and molecular characteristics of community-acquired S. aureus isolates recovered from paediatric patients with SSTIs in Shanghai, China. Between January 2015 and January 2018, 91 community-acquired S. aureus isolates were characterised by antibiotic susceptibility, multilocus sequence typing (ST), staphylococcal protein A gene (spa) type and virulence genes. Methicillin-resistant S. aureus (MRSA) strains were also characterised by staphylococcal cassette chromosome mec (SCCmec) type. Forty-one (45.1%) S. aureus isolates were MRSA. ST59 (33.0%, 30/91) was the most common sequence type, and t437 (18.7%, 17/91) was the most common spa type. SCCmec IV and V accounted for 61.0% and 34.1% of all MRSA isolates, respectively. Each isolate carried at least six virulence genes. The positive rates of Panton-Valentine leukocidin genes among all S. aureus, MRSA and methicillin-susceptible S. aureus isolates were 30.8% (28/91), 39.0% (16/41) and 24% (12/50), respectively. The prevalence of community-associated MRSA was surprisingly high among children with community-acquired SSTIs in Shanghai. ST59-t437 was the most prevalent community-acquired S. aureus clone causing SSTIs.


2011 ◽  
Vol 55 (5) ◽  
pp. 1896-1905 ◽  
Author(s):  
Anna C. Shore ◽  
Angela S. Rossney ◽  
Orla M. Brennan ◽  
Peter M. Kinnevey ◽  
Hilary Humphreys ◽  
...  

ABSTRACTThe arginine catabolic mobile element (ACME) is prevalent among methicillin-resistantStaphylococcus aureus(MRSA) isolates of sequence type 8 (ST8) and staphylococcal chromosomal cassettemec(SCCmec) type IVa (USA300) (ST8-MRSA-IVa isolates), and evidence suggests that ACME enhances the ability of ST8-MRSA-IVa to grow and survive on its host. ACME has been identified in a small number of isolates belonging to other MRSA clones but is widespread among coagulase-negative staphylococci (CoNS). This study reports the first description of ACME in two distinct strains of the pandemic ST22-MRSA-IV clone. A total of 238 MRSA isolates recovered in Ireland between 1971 and 2008 were investigated for ACME using a DNA microarray. Twenty-three isolates (9.7%) were ACME positive, and all were either MRSA genotype ST8-MRSA-IVa (7/23, 30%) or MRSA genotype ST22-MRSA-IV (16/23, 70%). Whole-genome sequencing and comprehensive molecular characterization revealed the presence of a novel 46-kb ACME and staphylococcal chromosomal cassettemec(SCCmec) composite island (ACME/SCCmec-CI) in ST22-MRSA-IVh isolates (n= 15). This ACME/SCCmec-CI consists of a 12-kb DNA region previously identified in ACME type II inS. epidermidisATCC 12228, a truncated copy of the J1 region of SCCmectype I, and a complete SCCmectype IVh element. The composite island has a novel genetic organization, with ACME located withinorfXand SCCmeclocated downstream of ACME. One PVL locus-positive ST22-MRSA-IVa isolate carried ACME located downstream of SCCmectype IVa, as previously described in ST8-MRSA-IVa. These results suggest that ACME has been acquired by ST22-MRSA-IV on two independent occasions. At least one of these instances may have involved horizontal transfer and recombination events between MRSA and CoNS. The presence of ACME may enhance dissemination of ST22-MRSA-IV, an already successful MRSA clone.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1445
Author(s):  
Yueh-Ling Chen ◽  
Eugene Yu-Chuan Kang ◽  
Lung-Kun Yeh ◽  
David H. K. Ma ◽  
Hsin-Yuan Tan ◽  
...  

This study analyzed the clinical features and molecular characteristics of methicillin-susceptible Staphylococcus aureus (MSSA) ocular infections in Taiwan and compared them between community-associated (CA) and health-care-associated (HA) infections. We collected S. aureus ocular isolates from patients at Chang Gung Memorial Hospital between 2010 and 2017. The infections were classified as CA or HA using epidemiological criteria, and the isolates were molecularly characterized using pulsed-field gel electrophoresis, multilocus sequence typing, and Panton-Valentine leukocidin (PVL) gene detection. Antibiotic susceptibility was evaluated using disk diffusion and an E test. A total of 104 MSSA ocular isolates were identified; 46 (44.2%) were CA-MSSA and 58 (55.8%) were HA-MSSA. Compared with HA-MSSA strains, CA-MSSA strains caused a significantly higher rate of keratitis, but a lower rate of conjunctivitis. We identified 14 pulsotypes. ST 7/pulsotype BA was frequently identified in both CA-MSSA (28.3%) and HA-MSSA (37.9%) cases. PVL genes were identified in seven isolates (6.7%). Both CA-MSSA and HA-MSSA isolates were highly susceptible to vancomycin, teicoplanin, tigecycline, sulfamethoxazole–trimethoprim, and fluoroquinolones. The most common ocular manifestations were keratitis and conjunctivitis for CA-MSSA and HA-MSSA, respectively. The MSSA ocular isolates had diverse molecular characteristics; no specific genotype differentiated CA-MSSA from HA-MSSA. Both strains exhibited similar antibiotic susceptibility.


2013 ◽  
Vol 13 (1) ◽  
pp. 100-107 ◽  
Author(s):  
Lance R. Thurlow ◽  
Gauri S. Joshi ◽  
Justin R. Clark ◽  
Jeffrey S. Spontak ◽  
Crystal J. Neely ◽  
...  

mBio ◽  
2013 ◽  
Vol 4 (6) ◽  
Author(s):  
Paul J. Planet ◽  
Samuel J. LaRussa ◽  
Ali Dana ◽  
Hannah Smith ◽  
Amy Xu ◽  
...  

ABSTRACTThe arginine catabolic mobile element (ACME) is the largest genomic region distinguishing epidemic USA300 strains of methicillin-resistantStaphylococcus aureus(MRSA) from otherS. aureusstrains. However, the functional relevance of ACME to infection and disease has remained unclear. Using phylogenetic analysis, we have shown that the modular segments of ACME were assembled into a single genetic locus inStaphylococcus epidermidisand then horizontally transferred to the common ancestor of USA300 strains in an extremely recent event. Acquisition of one ACME gene,speG, allowed USA300 strains to withstand levels of polyamines (e.g., spermidine) produced in skin that are toxic to other closely relatedS. aureusstrains.speG-mediated polyamine tolerance also enhanced biofilm formation, adherence to fibrinogen/fibronectin, and resistance to antibiotic and keratinocyte-mediated killing. We suggest that these properties gave USA300 a major selective advantage during skin infection and colonization, contributing to the extraordinary evolutionary success of this clone.IMPORTANCEOver the past 15 years, methicillin-resistantStaphylococcus aureus(MRSA) has become a major public health problem. It is likely that adaptations in specific MRSA lineages (e.g., USA300) drove the spread of MRSA across the United States and allowed it to replace other, less-virulentS. aureusstrains. We suggest that one major factor in the evolutionary success of MRSA may have been the acquisition of a gene (speG) that allowsS. aureusto evade the toxicity of polyamines (e.g., spermidine and spermine) that are produced in human skin. Polyamine tolerance likely gave MRSA multiple fitness advantages, including the formation of more-robust biofilms, increased adherence to host tissues, and resistance to antibiotics and killing by human skin cells.


Sign in / Sign up

Export Citation Format

Share Document