scholarly journals Conformation-dependent partitioning of yeast nutrient transporters into starvation-protective membrane domains

2018 ◽  
Vol 115 (14) ◽  
pp. E3145-E3154 ◽  
Author(s):  
Christos Gournas ◽  
Stelios Gkionis ◽  
Mélanie Carquin ◽  
Laure Twyffels ◽  
Donatienne Tyteca ◽  
...  

The eukaryotic plasma membrane is compartmentalized into domains enriched in specific lipids and proteins. However, our understanding of the molecular bases and biological roles of this partitioning remains incomplete. The best-studied domain in yeast is the membrane compartment containing the arginine permease Can1 (MCC) and later found to cluster additional transporters. MCCs correspond to static, furrow-like invaginations of the plasma membrane and associate with subcortical structures named “eisosomes” that include upstream regulators of the target of rapamycin complex 2 (TORC2) in the sensing of sphingolipids and membrane stress. However, how and why Can1 and other nutrient transporters preferentially segregate in MCCs remains unknown. In this study we report that the clustering of Can1 in MCCs is dictated by its conformation, requires proper sphingolipid biosynthesis, and controls its ubiquitin-dependent endocytosis. In the substrate-free outward-open conformation, Can1 accumulates in MCCs in a manner dependent on sustained biogenesis of complex sphingolipids. An arginine transport-elicited shift to an inward-facing conformation promotes its cell-surface dissipation and makes it accessible to the ubiquitylation machinery triggering its endocytosis. We further show that under starvation conditions MCCs increase in number and size, this being dependent on the BAR domain-containing Lsp1 eisosome component. This expansion of MCCs provides protection for nutrient transporters from bulk endocytosis occurring in parallel with autophagy upon TORC1 inhibition. Our study reveals nutrient-regulated protection from endocytosis as an important role for protein partitioning into membrane domains.

2021 ◽  
Author(s):  
Jakub Zahumensky ◽  
Caroline Mota Fernandes ◽  
Petra Vesela ◽  
Maurizio Del Poeta ◽  
James Bernard Konopka ◽  
...  

Sphingolipids are essential building blocks of eukaryotic membranes and important signalling molecules, tightly regulated in response to environmental and physiological inputs. Mechanism of sphingolipid level perception at the plasma membrane remains unclear. In Saccharomyces cerevisiae, Nce102 protein has been proposed to function as sphingolipid sensor as it changes its plasma membrane distribution in response to sphingolipid biosynthesis inhibition. We show that Nce102 redistributes specifically in regions of increased sphingolipid demand, e.g., membranes of nascent buds. Furthermore, we report that production of Nce102 increases following sphingolipid biosynthesis inhibition and Nce102 is internalized when excess sphingolipid precursors are supplied. This suggests that the total amount of Nce102 in the plasma membrane is a measure of the current need for sphingolipids, whereas its local distribution marks sites of high sphingolipid demand. Physiological role of Nce102 in regulation of sphingolipid synthesis is demonstrated by mass spectrometry analysis showing reduced levels of complex sphingolipids and long-chain bases in nce102? deletion mutant. Nce102 behaves analogously in human fungal pathogen Candida albicans, suggesting a conserved principle of local sphingolipid control across species.


2007 ◽  
Vol 27 (16) ◽  
pp. 5725-5736 ◽  
Author(s):  
Jorge Pérez-Valle ◽  
Huw Jenkins ◽  
Stephanie Merchan ◽  
Vera Montiel ◽  
José Ramos ◽  
...  

ABSTRACT K+ transport in living cells must be tightly controlled because it affects basic physiological parameters such as turgor, membrane potential, ionic strength, and pH. In yeast, the major high-affinity K+ transporter, Trk1, is inhibited by high intracellular K+ levels and positively regulated by two redundant “halotolerance” protein kinases, Sat4/Hal4 and Hal5. Here we show that these kinases are not required for Trk1 activity; rather, they stabilize the transporter at the plasma membrane under low K+ conditions, preventing its endocytosis and vacuolar degradation. High concentrations (0.2 M) of K+, but not Na+ or sorbitol, transported by undefined low-affinity systems, maintain Trk1 at the plasma membrane in the hal4 hal5 mutant. Other nutrient transporters, such as Can1 (arginine permease), Fur4 (uracil permease), and Hxt1 (low-affinity glucose permease), are also destabilized in the hal4 hal5 mutant under low K+ conditions and, in the case of Can1, are stabilized by high K+ concentrations. Other plasma membrane proteins such as Pma1 (H+-pumping ATPase) and Sur7 (an eisosomal protein) are not regulated by halotolerance kinases or by high K+ levels. This novel regulatory mechanism of nutrient transporters may participate in the quiescence/growth transition and could result from effects of intracellular K+ and halotolerance kinases on membrane trafficking and/or on the transporters themselves.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 305 ◽  
Author(s):  
Zahumensky ◽  
Malinsky

One of the best characterized fungal membrane microdomains is the MCC/eisosome. The MCC (membrane compartment of Can1) is an evolutionarily conserved ergosterol-rich plasma membrane domain. It is stabilized on its cytosolic face by the eisosome, a hemitubular protein complex composed of Bin/Amphiphysin/Rvs (BAR) domain-containing Pil1 and Lsp1. These two proteins bind directly to phosphatidylinositol 4,5-bisphosphate and promote the typical furrow-like shape of the microdomain, with highly curved edges and bottom. While some proteins display stable localization in the MCC/eisosome, others enter or leave it under particular conditions, such as misbalance in membrane lipid composition, changes in membrane tension, or availability of specific nutrients. These findings reveal that the MCC/eisosome, a plasma membrane microdomain with distinct morphology and lipid composition, acts as a multifaceted regulator of various cellular processes including metabolic pathways, cellular morphogenesis, signalling cascades, and mRNA decay. In this minireview, we focus on the MCC/eisosome’s proposed role in the regulation of lipid metabolism. While the molecular mechanisms of the MCC/eisosome function are not completely understood, the idea of intracellular processes being regulated at the plasma membrane, the foremost barrier exposed to environmental challenges, is truly exciting.


Author(s):  
J.M. Robinson ◽  
J.M Oliver

Specialized regions of plasma membranes displaying lateral heterogeneity are the focus of this Symposium. Specialized membrane domains are known for certain cell types such as differentiated epithelial cells where lateral heterogeneity in lipids and proteins exists between the apical and basolateral portions of the plasma membrane. Lateral heterogeneity and the presence of microdomains in membranes that are uniform in appearance have been more difficult to establish. Nonetheless a number of studies have provided evidence for membrane microdomains and indicated a functional importance for these structures.This symposium will focus on the use of various imaging modalities and related approaches to define membrane microdomains in a number of cell types. The importance of existing as well as emerging imaging technologies for use in the elucidation of membrane microdomains will be highlighted. The organization of membrane microdomains in terms of dimensions and spatial distribution is of considerable interest and will be addressed in this Symposium.


2002 ◽  
Vol 277 (33) ◽  
pp. 30325-30336
Author(s):  
Daniel Wüstner ◽  
Andreas Herrmann ◽  
Mingming Hao ◽  
Frederick R. Maxfield

2018 ◽  
Vol 29 (17) ◽  
pp. 2113-2127 ◽  
Author(s):  
Akshay Moharir ◽  
Lincoln Gay ◽  
Daniel Appadurai ◽  
James Keener ◽  
Markus Babst

Eisosomes are lipid domains of the yeast plasma membrane that share similarities to caveolae of higher eukaryotes. Eisosomes harbor APC-type nutrient transporters for reasons that are poorly understood. Our analyses support the model that eisosomes function as storage compartments, keeping APC transporters in a stable, inactive state. By regulating eisosomes, yeast is able to balance the number of proton-driven APC transporters with the proton-pumping activity of Pma1, thereby maintaining the plasma membrane proton gradient. Environmental or metabolic changes that disrupt the proton gradient cause the rapid restructuring of eisosomes and results in the removal of the APC transporters from the cell surface. Furthermore, we show evidence that eisosomes require the presence of APC transporters, suggesting that regulating activity of nutrient transporters is a major function of eisosomes.


2016 ◽  
Author(s):  
B.B. Machta ◽  
E. Grey ◽  
M. Nouri ◽  
N.L.C. McCarthy ◽  
E.M. Gray ◽  
...  

AbstractDiverse molecules induce general anesthesia with potency strongly correlated both with their hydrophobicity and their effects on certain ion channels. We recently observed that several n-alcohol anesthetics inhibit heterogeneity in plasma membrane derived vesicles by lowering the critical temperature (Tc) for phase separation. Here we exploit conditions that stabilize membrane heterogeneity to further test the correlation between the anesthetic potency of n-alcohols and effects on Tc. First we show that hexadecanol acts oppositely to n-alcohol anesthetics on membrane mixing and antagonizes ethanol induced anesthesia in a tadpole behavioral assay. Second, we show that two previously described ‘intoxication reversers’ raise Tc and counter ethanol’s effects in vesicles, mimicking the findings of previous electrophysiological and behavioral measurements. Third, we find that hydrostatic pressure, long known to reverse anesthesia, also raises Tc in vesicles with a magnitude that counters the effect of butanol at relevant concentrations and pressures. Taken together,these results demonstrate that ΔTc predicts anesthetic potency for n-alcohols better than hydrophobicity in a range of contexts, supporting a mechanistic role for membrane heterogeneity in general anesthesia.


Sign in / Sign up

Export Citation Format

Share Document