scholarly journals Pivotal roles of PCNA loading and unloading in heterochromatin function

2018 ◽  
Vol 115 (9) ◽  
pp. E2030-E2039 ◽  
Author(s):  
Ryan Janke ◽  
Grant A. King ◽  
Martin Kupiec ◽  
Jasper Rine

In Saccharomyces cerevisiae, heterochromatin structures required for transcriptional silencing of the HML and HMR loci are duplicated in coordination with passing DNA replication forks. Despite major reorganization of chromatin structure, the heterochromatic, transcriptionally silent states of HML and HMR are successfully maintained throughout S-phase. Mutations of specific components of the replisome diminish the capacity to maintain silencing of HML and HMR through replication. Similarly, mutations in histone chaperones involved in replication-coupled nucleosome assembly reduce gene silencing. Bridging these observations, we determined that the proliferating cell nuclear antigen (PCNA) unloading activity of Elg1 was important for coordinating DNA replication forks with the process of replication-coupled nucleosome assembly to maintain silencing of HML and HMR through S-phase. Collectively, these data identified a mechanism by which chromatin reassembly is coordinated with DNA replication to maintain silencing through S-phase.

2017 ◽  
Author(s):  
Ryan Janke ◽  
Grant King ◽  
Martin Kupiec ◽  
Jasper Rine

ABSTRACTIn Saccharomyces cerevisiae, heterochromatin structures required for transcriptional silencing of the HML and HMR loci are duplicated in coordination with passing DNA replication forks. Despite major reorganization of chromatin structure, the heterochromatic, transcriptionally-silent states of HML and HMR are successfully maintained throughout S-phase. Mutations of specific components of the replisome diminish the capacity to maintain silencing of HML and HMR through replication. Similarly, mutations in histone chaperones involved in replication-coupled nucleosome assembly reduce gene silencing. Bridging these observations, we determined that the PCNA unloading activity of Elg1 was important for coordinating DNA replication forks with the process of replication-coupled nucleosome assembly to maintain silencing of HML and HMR through S-phase. Collectively these data identified a mechanism by which chromatin reassembly is coordinated with DNA replication to maintain silencing through S-phase.SIGNIFICANCE STATEMENTDNA replication poses a unique logistical challenge for the cell in that structural features of chromatin and their regulatory functions must be carefully coordinated with passage of replication machinery so faithful duplication of both the genome and its chromatin structures may be achieved. Nucleosome assembly is fundamental to reestablishment of chromatin in the wake of DNA replication, and here a mechanism by which nucleosome assembly is coordinated with DNA replication to maintain silenced chromatin is described.


Microbiology ◽  
2009 ◽  
Vol 155 (11) ◽  
pp. 3748-3757 ◽  
Author(s):  
Devanand Kumar ◽  
Neha Minocha ◽  
Kalpana Rajanala ◽  
Swati Saha

DNA replication in eukaryotes is a highly conserved process marked by the licensing of multiple origins, with pre-replication complex assembly in G1 phase, followed by the onset of replication at these origins in S phase. The two strands replicate by different mechanisms, and DNA synthesis is brought about by the activity of the replicative DNA polymerases Pol δ and Pol ϵ. Proliferating cell nuclear antigen (PCNA) augments the processivity of these polymerases by serving as a DNA sliding clamp protein. This study reports the cloning of PCNA from the protozoan Leishmania donovani, which is the causative agent of the systemic disease visceral leishmaniasis. PCNA was demonstrated to be robustly expressed in actively proliferating L. donovani promastigotes. We found that the protein was present primarily in the nucleus throughout the cell cycle, and it was found in both proliferating procyclic and metacyclic promastigotes. However, levels of expression of PCNA varied through cell cycle progression, with maximum expression evident in G1 and S phases. The subnuclear pattern of expression of PCNA differed in different stages of the cell cycle; it formed distinct subnuclear foci in S phase, while it was distributed in a more diffuse pattern in G2/M phase and post-mitotic phase cells. These subnuclear foci are the sites of active DNA replication, suggesting that replication factories exist in Leishmania, as they do in higher eukaryotes, thus opening avenues for investigating other Leishmania proteins that are involved in DNA replication as part of these replication factories.


1994 ◽  
Vol 107 (12) ◽  
pp. 3291-3300 ◽  
Author(s):  
A. Nomura

Previous studies (Nomura et al. (1991) Dev. Biol. 143, 289–296 (1993) Dev. Biol. 159, 288–297) determined the time of DNA replication period (S phase) in starfish eggs fertilized either during or after oocyte maturation. Here proliferating cell nuclear antigen (PCNA) localized within nuclei of starfish eggs was detected with an anti-PCNA human antiserum. Using a confocal laser scanning microscope, a three-dimensional structure of the PCNA region was analyzed. In eggs fertilized during maturation, PCNA started to localize within the nuclei at the same time as the initiation of the first S phase. During the S phase, the distribution of localized PCNA in a three-dimensional view coincided with the chromatin distribution. After the S phase, PCNA remained localized within the nuclei, but its distribution no longer coincided with the chromatin distribution. In eggs fertilized after maturation, however, PCNA started to localize within the female pronuclei about 10 minutes ahead of the first S phase. Localized PCNA occupied only a limited region of the nuclei without diffusing over the whole nuclear area. Chromatin distributed around the peripheral region of the nuclei mostly outside the PCNA region. When the first S phase was initiated, the chromatin distribution became coincident with the PCNA region. Later behavior of PCNA was the same as that of the eggs fertilized during maturation. The precocious localization of PCNA in those eggs fertilized after maturation simply demonstrates that the ‘postactivation process’ for preparing DNA replication is triggered by fertilization and PCNA localization and S phase are sequentially initiated with a time-lapse. On the other hand, the simultaneous occurrence of them seen in those eggs fertilized during maturation indicates that the postactivation process must be going on in parallel with the maturation process.


Genes ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 416 ◽  
Author(s):  
Dea Slade

DNA replication and repair are essential cellular processes that ensure genome duplication and safeguard the genome from deleterious mutations. Both processes utilize an abundance of enzymatic functions that need to be tightly regulated to ensure dynamic exchange of DNA replication and repair factors. Proliferating cell nuclear antigen (PCNA) is the major coordinator of faithful and processive replication and DNA repair at replication forks. Post-translational modifications of PCNA, ubiquitination and acetylation in particular, regulate the dynamics of PCNA-protein interactions. Proliferating cell nuclear antigen (PCNA) monoubiquitination elicits ‘polymerase switching’, whereby stalled replicative polymerase is replaced with a specialized polymerase, while PCNA acetylation may reduce the processivity of replicative polymerases to promote homologous recombination-dependent repair. While regulatory functions of PCNA ubiquitination and acetylation have been well established, the regulation of PCNA-binding proteins remains underexplored. Considering the vast number of PCNA-binding proteins, many of which have similar PCNA binding affinities, the question arises as to the regulation of the strength and sequence of their binding to PCNA. Here I provide an overview of post-translational modifications on both PCNA and PCNA-interacting proteins and discuss their relevance for the regulation of the dynamic processes of DNA replication and repair.


1995 ◽  
Vol 269 (3) ◽  
pp. H943-H951 ◽  
Author(s):  
K. Reiss ◽  
W. Cheng ◽  
J. Kajstura ◽  
E. H. Sonnenblick ◽  
L. G. Meggs ◽  
...  

To determine whether the growth of cardiac fibroblasts during development is modulated by the insulin-like growth factor (IGF)-1 receptor (IGF-1R), the expression of IGF-1, IGF-2, and IGF-1R was determined in fibroblasts from fetal and postnatal hearts. The expression of proliferating cell nuclear antigen (PCNA) and DNA polymerase-alpha was also evaluated in combination with the estimation of DNA replication. In comparison with fetal hearts, at postnatal day 21, fibroblast expression of IGF-1R mRNA, IGF-2, PCNA, and DNA polymerase-alpha was reduced by 77, 70, 80, and 86%, respectively. Moreover, IGF-1R protein decreased by 48% at 21 days. Bromodeoxyuridine labeling decreased by 88 and 89% in the left and right ventricle, respectively, at this time. Two different antisense oligodeoxynucleotides to IGF-1R reduced DNA replication by 60 and 44% in fibroblasts in culture. In addition, this intervention markedly attenuated the growth response of fibroblasts to IGF-1 or serum. In conclusion, the IGF-1R system appears to play a major role in the regulation of fibroblast growth in the heart in vivo.


2020 ◽  
Vol 117 (19) ◽  
pp. 10378-10387 ◽  
Author(s):  
Qiaoyu Lin ◽  
Bin Yu ◽  
Xiangyang Wang ◽  
Shicong Zhu ◽  
Gan Zhao ◽  
...  

Barrier-to-autointegration factor (BAF) is a highly conserved protein in metazoans that has multiple functions during the cell cycle. We found that BAF is SUMOylated at K6, and that this modification is essential for its nuclear localization and function, including nuclear integrity maintenance and DNA replication. K6-linked SUMOylation of BAF promotes binding and interaction with lamin A/C to regulate nuclear integrity. K6-linked SUMOylation of BAF also supports BAF binding to DNA and proliferating cell nuclear antigen and regulates DNA replication. SENP1 and SENP2 catalyze the de-SUMOylation of BAF at K6. Disrupting the SUMOylation and de-SUMOylation cycle of BAF at K6 not only disturbs nuclear integrity, but also induces DNA replication failure. Taken together, our findings demonstrate that SUMOylation at K6 is an important regulatory mechanism that governs the nuclear functions of BAF in mammalian cells.


2008 ◽  
Vol 19 (12) ◽  
pp. 5193-5202 ◽  
Author(s):  
Simone Sabbioneda ◽  
Audrey M. Gourdin ◽  
Catherine M. Green ◽  
Angelika Zotter ◽  
Giuseppina Giglia-Mari ◽  
...  

Y-family DNA polymerases carry out translesion synthesis past damaged DNA. DNA polymerases (pol) η and ι are usually uniformly distributed through the nucleus but accumulate in replication foci during S phase. DNA-damaging treatments result in an increase in S phase cells containing polymerase foci. Using photobleaching techniques, we show that polη is highly mobile in human fibroblasts. Even when localized in replication foci, it is only transiently immobilized. Although ubiquitination of proliferating cell nuclear antigen (PCNA) is not required for the localization of polη in foci, it results in an increased residence time in foci. polι is even more mobile than polη, both when uniformly distributed and when localized in foci. Kinetic modeling suggests that both polη and polι diffuse through the cell but that they are transiently immobilized for ∼150 ms, with a larger proportion of polη than polι immobilized at any time. Treatment of cells with DRAQ5, which results in temporary opening of the chromatin structure, causes a dramatic immobilization of polη but not polι. Our data are consistent with a model in which the polymerases are transiently probing the DNA/chromatin. When DNA is exposed at replication forks, the polymerase residence times increase, and this is further facilitated by the ubiquitination of PCNA.


Sign in / Sign up

Export Citation Format

Share Document